Machine Learning
This is a CSI dataset towards 5G NR high-precision positioning,
which is fine-grained, general-purpose and 3GPP R18 standards complied.
The corresponding paper is published here (https://doi.org/10.1109/jsac.2022.3157397).
5G NR is normally considered to as a new paradigm change in integrated sensing and communication (ISAC).
- Categories:
This article offers an empirical exploration on the use of character-level convolutional networks (ConvNets) for text classification. We constructed several large-scale datasets to show that character-level convolutional networks could achieve state-of-the-art or competitive results. Comparisons are offered against traditional models such as bag of words, n-grams and their TFIDF variants, and deep learning models such as word-based ConvNets and recurrent neural networks.
- Categories:
The University of Turin (UniTO) released the open-access dataset Stoke collected for the homonymous Use Case 3 in the DeepHealth project (https://deephealth-project.eu/). UniToBrain is a dataset of Computed Tomography (CT) perfusion images (CTP).
- Categories:
Most of existing audio fingerprinting systems have limitations to be used for high-specific audio retrieval at scale. In this work, we generate a low-dimensional representation from a short unit segment of audio, and couple this fingerprint with a fast maximum inner-product search. To this end, we present a contrastive learning framework that derives from the segment-level search objective. Each update in training uses a batch consisting of a set of pseudo labels, randomly selected original samples, and their augmented replicas.
- Categories:
The given Dataset is record of different age group people either diabetic or non diabetic for theie blood glucose level reading with superficial body features like body temperature, heart rate, blood pressure etc.
The main purpose of the dataset is to understand the effect of blood glucose level on human body.
The different superficial body parameters show sifnificant variation according to change in blood glucose level.
- Categories:
The data of machine learning attacks for MF-PUF
- Categories:
This dataset contains satellite images of areas of interest surrounding 30 different European airports. It also provides ground-truth annotations of flying airplanes in part of those images to support future research involving flying airplane detection. This dataset is part of the work entitled "Measuring economic activity from space: a case study using flying airplanes and COVID-19" published by the IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. It contains modified Sentinel-2 data processed by Euro Data Cube.
- Categories:
Parallel fractional hot-deck imputation (P-FHDI) is a general-purpose, assumption-free tool for handling item nonresponse in big incomplete data by combining the theory of FHDI and parallel computing. FHDI cures multivariate missing data by filling each missing unit with multiple observed values (thus, hot-deck) without resorting to distributional assumptions. P-FHDI can tackle big incomplete data with millions of instances (big-n) or 10, 000 variables (big-p).
- Categories:
Context
This dataset consists of subject wise daily living activity data, which is acquired from the inbuilt accelerometer and gyroscope sensors of the smartphones.
Content
The smartphone was mounted on the waist and front pockets of the users. All the different activities were performed in a laboratory except Running, which was performed on a Football Playground.
Smartphone used: Poco X2 and Samsung Galaxy A32s
Inbuild Sensors used: Accelerometer and Gyroscope
Ages: All subjects are Above 23 years
- Categories:
Packet delivery ratio data collected for the article Wireless-Sensor Network Topology Optimization in Complex Terrain: A Bayesian Approach. Published in the IEEE Internet of Things Journal.
- Categories: