Machine Learning

Recently, Temporal Information Retrieval (TIR) has grabbed the major attention of the information retrieval community. TIR exploits the temporal dynamics in the information retrieval process and harnesses both textual relevance and temporal relevance to fulfill the temporal information requirements of a user Ur Rehman Khan et al., 2018. The focus time of document is an important temporal aspect which is defined as the time to which the content of the document refers Jatowt et al., 2015; Jatowt et al., 2013; Morbidoni et al., 2018, Khan et al., 2018.

Categories:
500 Views

It contains the four biomarkers which we have selected for the instrument, in the first column we have the recordings for heart, in second we have recordings for temperature, third is for muscle activity and last column is for oxygen levels.

Categories:
441 Views

This heart disease dataset is curated by combining 5 popular heart disease datasets already available independently but not combined before. In this dataset, 5 heart datasets are combined over 11 common features which makes it the largest heart disease dataset available so far for research purposes. The five datasets used for its curation are:

Categories:
56160 Views

This dataset was collected from force, current, angle (magnetic rotary encoder), and inertial sensors of the NAO humanoid robot while walking on Vinyl, Gravel, Wood, Concrete, Artificial grass, and Asphalt without a slope and while walking on Vinyl, Gravel, and Wood with a slope of 2 degrees. In total, counting all different axes and components of each sensor, we monitored 27 parameters on-board of the robot.

Categories:
246 Views

GesHome dataset consists of 18 hand gestures from 20 non-professional subjects with various ages and occupation. The participant performed 50 times for each gesture in 5 days. Thus, GesHome consists of 18000 gesture samples in total. Using embedded accelerometer and gyroscope, we take 3-axial linear acceleration and 3-axial angular velocity with frequency equals to 25Hz. The experiments have been video-recorded to label the data manually using ELan tool.

Categories:
866 Views

This is an alarm management dataset based on the “Tennessee-Eastman-Process” (TEP). The presented dataset aims to provide a suitable benchmark for the development and validation of alarm management methods in complex industrial processes using both quantitative data and qualitative information from different sources. Unlike real industrial processes, the simulation of the TEP allows to design and generate abnormal situations, which can be repeated and varied without risking the loss of equipment or harming the environment.

Categories:
3954 Views

This data-set consists of 3-phase differential currents of internal faults and 4 other transients cases for Phase Angle Regulators (PAR). The transients other than faults include magnetizing inrush, sympathetic inrush, external faults with CT saturation, and overexcitation conditions.
 PSCAD/EMTDC software is used for simulation of the internal faults and the transients.

Categories:
647 Views

"The friction ridge pattern is a 3D structure which, in its natural state, is not deformed by contact with a surface''. Building upon this rather trivial observation, the present work constitutes a first solid step towards a paradigm shift in fingerprint recognition from its very foundations. We explore and evaluate the feasibility to move from current technology operating on 2D images of elastically deformed impressions of the ridge pattern, to a new generation of systems based on full-3D models of the natural nondeformed ridge pattern itself.

Categories:
2229 Views

This dataset is created with the usage of Galvanic Skin Response Sensor and Electrocardiogram sensor of MySignals Healthcare Toolkit. MySignals toolkit consists of the Arduino Uno board and different sensor ports. The sensors were connected to the different ports of the hardware kit which was controlled by Arduino SDK.

Categories:
1701 Views

The dataset consists of echo data collected at the Matre research station (61°N) of the Institute of Marine Research (IMR), Norway. Six square sea cages (12 × 12 m and 15 m depth; approximately 2000 m^3) were used. The fish's vertical distribution and density were observed continuously by a PC-based echo integration system (CageEye MK IV, software version 1.1.1., CageEye AS, Steinkjer, Norway) connected to an upward facing transducer which multiplexes between 50 kHz (42° acoustic beam angle) and 200 kHz (14° beam angle).

Categories:
676 Views

Pages