Anomaly Detection

This work aims to identify anomalous patterns that could be associated with performance degradation and failures in datacenter nodes, such as Virtual Machines or Virtual Machines clusters. The early detection of anomalies can enable early remediation measures, such as Virtual Machines migration and resource reallocation before losses occur. One way to detect anomalous patterns in datacenter nodes is using monitoring data from the nodes, such as CPU and memory utilization.

Categories:
742 Views

Anomaly detection is a well-known topic in cybersecurity. Its application to the Internet of Things can lead to suitable protection techniques against problems such as denial of service attacks.

Categories:
3595 Views

This dataset includes the relevant data for the journal article titled 'A Novel LSTM Pipeline to Detect Anomalies in Manufacturing Production'. In this paper, we present a novel anomaly detection method using a semi-supervised LSTM forecasting approach to highlight process anomalies in a complex, real-world dataset in an automotive manufacturing setting. This data includes two time-series subsets, each with 5000 labeled observations.

Categories:
78 Views

Arbitrarily falling dices were photographed individually and monochromatically inside an Ulbricht sphere from two fixed perspectives. Overall, 11 dices with edge size 16 mm were used for 2133 falling experiments repeatedly. 5 of these dices were modified manually to have the following anomalies: drilled holes, missing dots, sawing gaps and scratches. All pictures in the uploaded pickle containers have a resolution of 400 times 400 pixels with normalized grey scale floating point values of 0 (black) through 1 (white).

Categories:
319 Views

Shoulder Physiotherapy Activity Recognition 9-Axis Dataset (SPARS9x) 

Suggested uses of this dataset include performing supervised classification analysis of physiotherapy exercises, or to perform out-of-distribution detection analysis with unlabeled activities of daily living data.
Description:
Categories:
1716 Views

This dataset is composed of 4-Dimensional time series files, representing the movements of all 38 participants during a novel control task. In the ‘5D_Data_Extractor.py’ file this can be set up to 6-Dimension, by the ‘fields_included’ variable. Two folders are included, one ready for preprocessing (‘subjects raw’) and the other already preprocessed ‘subjects preprocessed’.

Categories:
314 Views

This data set comprises 4223 videos from a laser surface heat treatment process (also called laser heat treatment) applied to cylindrical workpieces made of steel. The purpose of the dataset is to detect anomalies in the laser heat treatment learning a model from a set of non-anomalous videos.

In the laser heat treatment, the laser beam is following a pattern similar to an "eight" with a frequency of 100 Hz. This pattern is sometimes modified to avoid obstacles in the workpieces.

Categories:
682 Views

Pages