Remote Sensing

This dataset provides the high-resolution remote senisng data regarding various coastline scenes.

Categories:
219 Views

In this project, an LSTM-based Model Predictive Controller (LSTM-MPC), with 200 neurons of each layer, is designed to have a highly efficient control on the temperature. The resulted dataset is attached, for further considerations.

Categories:
433 Views

Buildings are essential components of urban areas. While research on the extraction and 3D reconstruction of buildings is widely conducted, information on fine-grained roof types of buildings is usually ignored. This limits the potential of further analysis, e.g., in the context of urban planning applications. The fine-grained classification of building roof type from satellite images is a highly challenging task due to ambiguous visual features within the satellite imagery.

Last Updated On: 
Tue, 03/07/2023 - 11:58

ocean front time-series

Categories:
82 Views

In this dataset, we provided the raw analog-to-digital-converter (ADC) data of a 77GHz mmwave radar for the automotive object detection scenario. The overall dataset contains approximately 19800 frames of radar data as well as synchronized camera images and labels. For each radar frame, its raw data has 4 dimension: samples (fast time), chirps (slow time), transmitters, receivers. The experiment radar was assembled from the TI AWR 1843 board, with 2 horizontal transmit antennas and 4 receive antennas.

Categories:
2526 Views

This dataset provides Channel Impulse Response (CIR) measurements from standard-compliant IEEE 802.11ay packets to validate Integrated Sensing and Communication (ISAC) methods. The CIR sequences contain reflections of the transmitted packets on people moving in an indoor environment. They are collected with a 60 GHz software-defined radio experimentation platform based on the IEEE 802.11ay Wi-Fi standard, which is not affected by frequency offsets by operating in full-duplex mode.
The dataset is divided into two parts:

Categories:
565 Views

The greenhouse remote sensing image dataset we produced contains 2101 tiles and 23914 greenhouses. And in the data set, 37.9% of dense scenes were added, so that the model trained through this data set could better adapt to the dense scene detection task.

Categories:
172 Views

The concentration of sea ice is essential for determining crucial climate factors. Together with sea ice thickness, it is possible to determine significant air-sea fluxes and atmospheric heat transfer. In this study, the SARAL/AltiKa Sea Ice Algorithm is used to determine the monthly sea ice concentration (SIC) in the Arctic (SSIA). For the period from April 2013 to December 2020, data from the dual-frequency microwave radiometer (23.8 GHz and 37 GHz) on the SARAL/AltiKa satellite are used to compute SIC. 

Categories:
94 Views

This data is a conversion of remote sensing data into a VOC2012 dataset.

Categories:
59 Views

Pages