Climate Change/Environmental

The temporal variability in calving front positions of marine-terminating glaciers permits inference on the frontal ablation. Frontal ablation, the sum of the calving rate and the melt rate at the terminus, significantly contributes to the mass balance of glaciers. Therefore, the glacier area has been declared as an Essential Climate Variable product by the World Meteorological Organization. The presented dataset provides the necessary information for training deep learning techniques to automate the process of calving front delineation.

Categories:
184 Views

In the wake of marine oil exploration and transportation, the accidents of oil spills have occurred
frequently around the world, which leads to the severe pollution of the marine environment and the
huge damage of coastal species [1–6]. On April 20, 2010, the explosion of Deepwater Horizon oil
drilling platform led to a severe leakage. Million barrels of oil polluted the Gulf of Mexico with the
area of about 10,000 square kilometers [7, 8]. Due to this accident, the marine ecosystems, such as fish

Categories:
669 Views

urrently, a significant amount of research is focused on detecting Marine Debris and assessing its spectral behaviour via remote sensing, ultimately aiming at new operational monitoring solutions. Here, we introduce a Marine Debris Archive (MARIDA), as a benchmark dataset for developing and evaluating Machine Learning (ML) algorithms capable of detecting Marine Debris.

Categories:
428 Views

This dataset consists of 3500 images of beach litter and 3500 corresponding pixel-wise labelled images. Although performing such pixel-by-pixel semantic masking is expensive, it allows us to build machine-learning models that can perform more sophisticated automated visual processing. We believe this dataset may be of significance to the scientific communities concerned with marine pollution and computer vision, as this dataset can be used for benchmarking in the tasks involving the evaluation of marine pollution with various machine learning models.

Categories:
425 Views

Tree planting has the potential to improve the livelihoods of millions of people as well as to support environmental services such as biodiversity conservation. Planting however needs to be executed wisely if benefits are to be achieved. We have developed the GlobalUsefulNativeTrees (GlobUNT) database to directly support the principles advocated by the ‘golden rules for reforestation’, including planting tree mixtures that maximize the benefits to local livelihoods and the diversity of native trees.

Categories:
148 Views

As the harmful effects of climate change on human society increase, the analysis of abnormal weather is becoming an important issue. Therefore, this work provides the Korean weather dataset, including the anomaly score measurements by using seven different methods. In this dataset, seven types of weather data for each day in 64 Korean cities from 2010 to 2020 are provided by Weather Radar Center in Korea Meteorological Administration.

Categories:
282 Views

It is observed from the pattern of Electricity Demand in the months of November 2022 and March 2023 that switchover from Summer Time to Winter Time and vice versa causes a shift in demand pattern corresponding to the time shifts. The hourly electricity demands of US48 states have been shown in separate excel files for November 2022 and March 2023. In sheet 2 of  both the excel files, a graphical plot of the average hourly demands in the week before the switchover has been compared with a graphical plot of the average hourly demands in the week after the switchover.

Categories:
21 Views

Since meteorological satellites can observe the Earth’s atmosphere from a spatial perspective at a large scale, in this paper, a dust storm database is constructed using multi-channel and dust label data from the Fengyun-4A (FY-4A) geosynchronous orbiting satellite, namely, the Large-Scale Dust Storm database based on Satellite Images and Meteorological Reanalysis data (LSDSSIMR), with a temporal resolution of 15 minutes and a spatial resolution of 4 km from March to May of each year during 2020–2022.

Categories:
743 Views

This paper presents a bi-directional Long ShortTerm Memory (LSTM) model for the detection of landslides. Previous uses of machine learning in this setting have demonstrated its general potential, which necessitates the implementation of a suitable algorithm. Landslides are natural disasters that can cause significant destruction and disruption in the affected areas. Early detection is the key to minimizing the impact of landslides, so it is important to develop accurate and efficient models.

Categories:
1481 Views

Pages