This dataset is associated with the paper, Jackson & Hall 2016, which is open source, and can be found here:

The DataPort Repository contains the data used primarily for generating Figure 1.


** Please note that this is under construction, and all data and code is still being uploaded whilst this notice is present. Thank-you. Tom **

All code is hosted as a GIT repository (below), as well as instructions, which can be found by clicking on the link/file called in that repository.

You are free to clone/pull this repository and use it under MIT license, on the understanding that any use of this code will be acknowledged by citing the original paper, DOI: 10.1109/TNSRE.2016.2612001, which is Open Access and can be found here:


7200 .csv files, each containing a 10 kHz recording of a 1 ms lasting 100 hz sound, recorded centimeterwise in a 20 cm x 60 cm locating range on a table. 3600 files (3 at each of the 1200 different positions) are without an obstacle between the loudspeaker and the microphone, 3600 RIR recordings are affected by the changes of the object (a book). The OOLA is initially trained offline in batch mode by the first instance of the RIR recordings without the book. Then it learns online in an incremental mode how the RIR changes by the book.


folder 'load and preprocess offline data': matlab sourcecodes and raw/working offline (no additional obstacle) data files

folder 'lvq and kmeans test': matlab sourcecodes to test and compare in-sample failure with and without LVQ

folder 'online data load and preprocess': matlab sourcecodes and raw/working online (additional obstacle) data files

folder 'OOL': matlab sourcecodes configurable for case 1-4

folder 'OOL2': matlab sourcecodes for case 5

folder 'plots': plots and simulations


Monitoring cell viability and proliferation in real-time provides a more comprehensive picture of the changes cells undergo during their lifecycle than can be achieved using traditional end-point assays. Our lab has developed a CMOS biosensor that monitors cell viability through high-resolution capacitance measurements of cell adhesion quality. The system consists of a 3 × 3 mm2 chip with an array of 16 sensors, on-chip digitization, and serial data output that can be interfaced with inexpensive off-the-shelf components.


The dataset file ( contains capacitance measurements and images. CSV data is provided in the "capData_csv" folder. Images are provided in the "images" folder. The data in MATLAB format is found in "capData.mat". The MATLAB script file, "script_plot_data.m", contains code to parse and plot the data. It can be used as an example to perform data analysis. The spatial locations of the 16 channels can be found in "channel_numbers.jpg".

Please see the attached documentation file for more details.



These datasets are of the hydraulically actuated robot HyQ’s proprioceptive sensors. They include absolute and relative encoders, force and torque sensors, and MEMS-based and fibre optic-based inertial measurement units (IMUs). Additionally, a motion capture system recorded the ground truth data with millimetre accuracy. In the datasets HyQ was manually controlled to trot in place or move around the laboratory. The sequence includes: forward and backwards motion, side-to-side motion, zig-zags, yaw motion, and a mix of linear and yaw motion.


Please see instructions.pdf.


The file contains two arrays:


InCondSim: the initial conditions of the combustion system organized as C3H8, C2H5, CH3, O2, C3H7, HO2, H7C3, CH4, HH, H2, OO, OH, H2O, HO2, H2O2, C2H4, C3H6, C3H5, CH2O, HCO, MM, CH3O, C2H6, C2H3, C2H2, C2H, CO, CH2, CO2.


peakPWR: the peak power generated by the combustion.


The file contains two arrays

inputs: contains the values of the mechanical parameters of the suspension ordered as kwh ,ksus, kseat, csus, cseat, V

output: contains the corresponding value of the vibration transmitted by the vehicle suspension system


This dataset includes all the datum of our  numerial simulations, which are generated from networks with 5-25 end-to-end paths.


In order to discriminate and mark audio signal segments which include normal human speech and discriminate segments which do not include speech (like silence, music and noise), Speech/Music Discrimination (SMD) systems are used. Using this definition, SMD systems can be considered as a specific or accurate type of speech activity detection system.


Files are being reviewed; they will be uploaded here soon ...


The metaheuristic optimization algorithms are relatively the new kinds of optimization algorithms which are widely used for difficult optimization problems in which the classic methods cannot be applied and are considered as known and very broad methods for crucial optimization problems. Here, a new metaheuristic optimization algorithm is presented for which the main idea is extracted from a kind of motion in physics and is expected to have better results compared to other optimization algorithms in this field to present a novel method for achieving a more desirable point.


Please Download From HERE. (Source Code & Paper)


The class of registration methods proposed in the framework of Stokes Large Deformation
Diffeomorphic Metric Mapping is a particularly interesting family of physically
meaningful diffeomorphic registration methods.
Stokes-LDDMM methods are formulated as a conditioned variational problem,
where the different physical models are imposed using the associated partial differential equations
as hard constraints.
The most significant limitation of Stokes-LDDMM framework is its huge computational complexity.