Skip to main content

Wireless Networking

The 5G cellular technology has introduced advanced radio communication protocols and new frequency bands and enabled faster data exchange. These improvements increase network capacity and establish a foundation for high-bandwidth, low-latency services, helping the development of applications like the Internet of Things (IoT). However, information security poses significant challenges, particularly concerning attacks such as Fake Base Stations (FBS) and Stream Control Transmission Protocol (SCTP) Session Hijacking.

Categories:

The benchmarking dataset, GenAI on the Edge, contains performance metrics from evaluating Large Language Models (LLMs) on edge devices, utilizing a distributed testbed of Raspberry Pi devices orchestrated by Kubernetes (K3s). It includes performance data collected from multiple runs of prompt-based evaluations with various LLMs, leveraging Prometheus and the Llama.cpp framework. The dataset captures key metrics such as resource utilization, token generation rates/throughput, and detailed inference timing for stages such as Sample, Prefill, and Decode.

Categories:

This paper presents the methodology and outcomes of a comprehensive dataset collection using ESP32-Nodemcu devices and the ESP32-CSI Toolkit. The dataset, designed to explore the capabilities of Channel State Information (CSI) in distinguishing human activities, was collected in a controlled indoor environment under three scenarios: single-user, two-user, and three-user setups.

Categories:

We introduce a wireless potato root tuber sensing (WPS) dataset comprising multi-channel received signal strength(RSS) data from a wireless network and ground truth annotations for potato root tubers. We design a testbed called spin, which is based on a multi-channel wireless network, the wireless network is consist of 16 TI CC25231 nodes deploy on a white rack, using this testbed, we conduct extensive measurement expriments. We first perform expriments in a static environment.

Categories:

Channel estimation is crucial in cognitive communications, as it enables intelligent spectrum sensing and adaptive transmission by providing accurate information about the channel state information. Current channel estimation neural networks are frequently tested by training and testing on one example channel or similar channels. However, data-driven methods often degrade on new data which they are not trained on, because they cannot extrapolate their training knowledge.

Categories:

The necessity for strong security measures to fend off cyberattacks has increased due to the growing use of Industrial Internet of Things (IIoT) technologies. This research introduces IoTForge Pro, a comprehensive security testbed designed to generate a diverse and extensive intrusion dataset for IIoT environments. The testbed simulates various IIoT scenarios, incorporating network topologies and communication protocols to create realistic attack vectors and normal traffic patterns.

Categories:

MobRFFI is a WiFi device fingerprinting and re-identification dataset collected in the Orbit testbed facility in July and April 2024. The dataset contains raw IQ samples of WiFi transmissions captured at 25 Msps on channel 11 (2462 MHz) in the 2.4 GHz band, using Ettus Research N210r4 USRPs as receivers and a set of WiFi nodes equipped with Atheros AR5212 chipsets as transmitters. The data collection spans two days (July 19 and August 8, 2024) and includes 12,068 capture files totaling 5.7 TB of data.

Categories:

This dataset offers both Channel State Information (CSI) and Beamforming Feedback Information (BFI) data for human activity classification, featuring 20 distinct activities performed by three subjects across three environments. Collected in both line-of-sight (LoS) and non-line-of-sight (NLoS) scenarios, this dataset enables researchers to explore the complementary roles of CSI and BFI in activity recognition and environmental characterization.

Categories: