Machine Learning

Anxiety affects human capabilities and behavior as much as it affects productivity and quality of life. It can be considered as the main cause of depression and suicide. Anxious states are easily detectable by humans due to their acquired cognition, humans interpret the interlocutor’s tone of speech, gesture, facial expressions and recognize their mental state. There is a need for non-invasive reliable techniques that perform the complex task of anxiety detection.

Categories:
8698 Views

Character recognition has been widely understood as a means of mechanizing the process of understanding text in the written form to facilitate fast and efficient use of text. Indeed, text existing all around us presents information for peoples. However, tourists in foreign countries are unable to understand what indicate text on road signs, shop names, product advertisements, posters, etc. when they are unfamiliar with the native language of the visited country.

Categories:
791 Views

The ADAB database (The Arabic handwriting Data Base) was developed to advance the research and development of Arabic on-line handwritten systems. This database is developed in cooperation between the Institut fuer Nachrichtentechnik (IfN) and Research Groups in Intelligent Machines, University of Sfax, Tunisia. The text written is from 937 Tunisian town/village names. A pre-label assigned to each file consists of the postcode in a sequence of Numeric Character References, which stored in the UPX file format.

Categories:
2498 Views

The dataset consists all the Telugu characters that contains Vowels, Consonants and combine characters such as Othulu (Consonant-Consonant) and Guninthamulu (Consonant-Volwels). The main objective of this dataset to recognize handwritten Telugu characters, from that convert handwritten document into editable electronic copy.

Categories:
4539 Views

In modern computational science, the interplay existing between machine learning and optimization process marks the most vital developments. Optimization plays an important role in mechanical industries because it leads to reduce in material cost, time consumption and increase in production rate. The recent work focuses on performing the optimization task on Friction Stir Welding process for obtaining the maximum Ultimate Tensile Strength (UTS) of the friction stir welded joints. Two machine learning algorithms i.e.

Categories:
413 Views

Training, Test, and Validation data pertaining to the real-time packet data captured in Sonic Firewall is attached herewith.

Categories:
217 Views

The data collection was carried out over several months and across several cities including but not limited to Quetta, Islamabad and Karachi, Pakistan. Ultimately, the number of images collected as part of the Pakistani dataset were, albeit in a very small quantity. The images taken were also distributed across the classes unevenly, just like the German dataset. All the 359 images were then manually cropped to filter out the unwanted image background data. All the images were sorted into folders with names corresponding to the label of the images.

Categories:
2168 Views

Advent in machine learning is leaving a deep impact on various sectors including the material science domain. The present paper highlights the application of various supervised machine learning regression algorithms such as polynomial regression, decision tree regression algorithm, random forest algorithm, support vector regression algorithm and artificial neural network algorithm to determine the thin film thickness of Polystyrene on the glass substrates.

Categories:
253 Views

We study the ability of neural networks to steer or control trajectories of dynamical systems on graphs, which we represent with neural ordinary differential equations (neural ODEs). To do so, we introduce a neural-ODE control (NODEC) framework and find that it can learn control signals that drive graph dynamical systems into desired target states. While we use loss functions that do not constrain the control energy, our results show that NODEC produces control signals that are highly correlated with optimal (or minimum energy) control signals.

Categories:
731 Views

One paramount challenge in multi-ion-sensing arises from ion interference that degrades the accuracy of sensor calibration. Machine learning models are here proposed to optimize such multivariate calibration. However, the acquisition of big experimental data is time and resource consuming in practice, necessitating new paradigms and efficient models for these data-limited frameworks. Therefore, a novel approach is presented in this work, where a multi-ion-sensing emulator is designed to explain the response of an ion-sensing array in a mixed-ion environment.

Categories:
148 Views

Pages