Rembrandt contains data generated through the Glioma Molecular Diagnostic Initiative from 874 glioma specimens comprising approximately 566 gene expression arrays, 834 copy number arrays, and 13,472 clinical phenotype data points. These data are currently housed in Georgetown University's G-DOC System and are described in a related manuscript .

Categories:
124 Views

The dermoscopic images considered in the paper "Dermoscopic Image Classification with Neural Style Transfer" are available for public download through the ISIC database (https://www.isic-archive.com/#!/topWithHeader/wideContentTop/main). These are 24-bit JPEG images with a typical resolution of 768 × 512 pixels. However, not all the images in the database are in satisfactory condition.

Categories:
307 Views

Recent works that utilized deep models have achieved superior results in various image restoration (IR) applications. Such approach is typically supervised, which requires a corpus of training images with distributions similar to the images to be recovered. On the other hand, the shallow methods, which are usually unsupervised remain promising performance in many inverse problems, \eg, image deblurring and image compressive sensing (CS), as they can effectively leverage nonlocal self-similarity priors of natural images.

Categories:
59 Views

Reverse transcription-polymerase chain reaction (RT-PCR) is currently the gold standard in COVID-19 diagnosis. It can, however, take days to provide the diagnosis, and false negative rate is relatively high. Imaging, in particular chest computed tomography (CT), can assist with diagnosis and assessment of this disease. Nevertheless, it is shown that standard dose CT scan gives significant radiation burden to patients, especially those in need of multiple scans.

Instructions: 

 

“Dataset-S1” contains two folders for COVID-19 and Normal DICOM images, named as “COVID-S1” and “Normal-S1”, respectively. Within the same folder, three CSV files are available. The first one, named as “Radiologist-S1.csv”, contains labels assigned to the corresponding cases by three experienced radiologists. The second CSV file, “Clinical-S1.csv”, includes the clinical information as well as the result of the RT-PCR test, if available. The third file is named “LDCT-SL-Labels-S1.csv” and contains the slice-level labels related to COVID-19 cases. In other words, slices demonstrating infection are specified in this file.

Each row in this CSV file corresponds to a specific case, and each column represents the slice number in the volumetric CT scan. Label 1 indicates a slice with the evidence of infection, while 0 is assigned to slices with no evidence of infection.

Note that slices in each case should be sorted based on the “Slice-Location” value to match with the provided labels in the CSV file. The Slice Location values are stored in DICOM files and accessible from the following DICOM tag: (0020,1041) – DS – Slice Location

 “Dataset-S2” contains 100 COVID-19 positive cases, confirmed with RT-PCR test. 68 cases have related imaging findings, whereas 32 do not reveal signs of infection. These two groups are placed in two folders of “PCP-Lung-Positive “and “PCP-Lung-Negative”. “Dataset-S2” also includes a CSV file, namely “Clinical-S2.csv” presenting the clinical information.

 

Categories:
882 Views

The dataset consists of two classes: COVID-19 cases and Healthy cases 

Instructions: 

Unzip the dataset

Categories:
942 Views

DATA PROVIDED PRIOR TO ACCEPTANCE OF THE ASSOCIATED MANUSCRIPT.

This dataset contains video sequences and stereo reconstruction results supporting the IEEE Access contribution "Stereo laryngoscopic impact site prediction for droplet-based stimulation of the laryngeal adductor reflex" (J. F. Fast et al.).

See readme file for further information.

Instructions: 

See provided readme file for instructions.

Categories:
78 Views

    This contains data corresponding to the paper Multi-Resolution Data Fusion for Super-Resolution Imaging. 

Categories:
77 Views

Without publicly available dataset, specifically in handwritten document recognition (HDR), we cannot make a fair and/or reliable comparison between the methods. Considering HDR, Indic script’s document recognition is still in its early stage compared to others such as Roman and Arabic. In this paper, we present a page-level handwritten document image dataset (PHDIndic_11), of 11 official Indic scripts: Bangla, Devanagari, Roman, Urdu, Oriya, Gurumukhi, Gujarati, Tamil, Telugu, Malayalam and Kannada.

Instructions: 

See the attached pdf in documentation for more details about the dataset and benchmark results. Cite the following paper if you use the dataset for research purpose.

Obaidullah, S.M., Halder, C., Santosh, K.C. et al. PHDIndic_11: page-level handwritten document image dataset of 11 official Indic scripts for script identification. Multimed Tools Appl 77, 1643–1678 (2018). https://doi.org/10.1007/s11042-017-4373-y

Categories:
352 Views

An offline handwritten signature dataset from two most popular scripts in India namely Roman and Devanagari is proposed here. 

Instructions: 

Writer identification dataset availability on Indic scripts is a major issue to carry forward research in this domain. Devanagari and Roman are two most popular and widely used scripts of India. We have a total of 5433 signatures of 126 writers, out of which 3929 signatures from 80 writers in Roman script and 1504 signatures from 46 writers in Devanagari scripts. Script-wise per writer 49 signatures from Roman and 32 signatures from Devanagari are considered making an average of 43 signatures per writer on whole dataset. We have reported a benchmark results on this dataset for writer identification task using a lightweight CNN architecture. Our proposed method is compared with state-of-the-art handcrafted feature based method such as gray level co-occurrence matrix (GLCM), Zernike moments, histogram of oriented gradients (HOG), local binary pattern (LBP), weber local descriptor (WLD), gabor wavelet transform (GWT) and it outperforms. In addition, few well known CNN arechitechture is also compared with the proposed method and it shows comparable performance. 

User guidance: The images are available in .jpg format with 24 bit color. The dataset is freely available for research work. Cite the following paper while using the dataset

Sk Md Obaidullah, Mridul Ghosh, Himadri Mukherjee, Kaushik Roy and Umapada Pal “Automatic Signature-based Writer Identification in Mixed-script Scenarios”, in 16th International Conference on Document Analysis and Recognition (ICDAR 2021), Lussane, Switzerland, 2021

Categories:
271 Views

<p>The dataset comprises 2035 images from 14 different software architectural patterns (100+ images each), viz., Broker, Client Server, Microkernel, Repository, Publisher-Subscriber, Peer-to-Peer, Event Bus, Model View Controller, REST, Layered, Presentation Abstraction Controller, Microservices, and Space-based patterns.</p>

Categories:
162 Views

Pages