Image Processing

Aboveground biomass (AGB) is a vital indicator for studying the carbon sink in forest ecosystems. Semi-arid forests harbor substantial carbon storage but received little attention as high spatial-temporal heterogeneity. This study assessed the performance of different data sources (annual monthly time-series radar: Sentinel-1 (S1), annual monthly time-series optical: Sentinel-2 (S2), and single-temporal airborne LiDAR) and seven prediction approaches to map AGB in the semi-arid forests at the border between Gansu and Qinghai provinces in China.

Categories:
99 Views

The dataset comprises image files of size 640 x 480 pixels for various grit sizes of Abrasive sheets. The data collected is raw. It can be used for analysis, which requires images for surface roughness. The dataset consists of a total of 8 different classes of surface coarseness. There are seven classes viz. P80, P120, P150, P220, P320, P400, P600 as per FEPA (Federation of European Producers of Abrasives) numbering system and one class viz. 60 as per ANSI (American National Standards Institute) standards numbering system for abrasive sheets.

Categories:
249 Views

This is the relevant data in "Monocular Homography Estimation and Positioning Method for the Spatial-Temporal Distribution of Vehicle Loads Identification".

Categories:
95 Views

Structural analysis of minuscule height objects holds paramount significance in fields such as industrial manufacturing and medical testing. Currently, 3D reconstruction method based on shape from focus (SFF) has emerged as an efficacious approach for acquiring submicron-level height change information. A novel multi-field SFF(MF-SFF) framework incorporates pulse-controlled continuous acquisition methods and parallel chain processing (PCP) strategy, effectively addressing challenges associated with minuscule height objects.

Categories:
91 Views

OCD description. Cell lines A172 and U251: human glioblastoma; MCF7: human breast cancer; MRC5: human lung fibroblast; SCC25: human squamous cell carcinoma. Cultivation condition CTR: cells belonging to the control group - without the addition of chemotherapy; TMZ: cells treated with 50 μM temozolomide in some cultivation step.

Split

Categories:
295 Views

LDRText is a large-scale and diverse dataset that suitable for scene text image super-resolution and recognition tasks

Categories:
111 Views

This dataset is derived from Sentinel-2 satellite imagery.
The main goal is to employ this dataset to train and classify images into two classes: with trees, and without trees.
The structure of the dataset is 2 folders named: "tree" (images containing trees) and "no-trees" (images without presence of trees).
Each folder contains 5200 images of this type.

Categories:
236 Views

With the fast growth of deep learning, trainable frameworks have been presented to restore hazy images. However, the capability of most existing learning-based methods is limited since the parameters learned in an end-

Categories:
290 Views

In international contexts, natural scenes may include text in multiple languages. Especially, Latin and Arabic scene character image dataset is essential for training models to accurately detect and recognize text regions within real-world images. This is crucial for applications such as text translation, image search, content analysis, and autonomous vehicles that need to interpret text in different languages.

Categories:
271 Views

Pages