Artificial Intelligence
We study the ability of neural networks to steer or control trajectories of dynamical systems on graphs, which we represent with neural ordinary differential equations (neural ODEs). To do so, we introduce a neural-ODE control (NODEC) framework and find that it can learn control signals that drive graph dynamical systems into desired target states. While we use loss functions that do not constrain the control energy, our results show that NODEC produces control signals that are highly correlated with optimal (or minimum energy) control signals.
- Categories:
In this work, physical parameter‐based modeling of small signal parameters for a metal‐semiconductor field‐effect transistor (MESFET) has been carried out as continuous functions of drain voltage, gate voltage, frequency, and gate width. For this purpose, a device simulator has been used to generate a big dataset of which the physical device parameters included material type, doping concentration and profile, contact type, gate length, gate width, and work function.
- Categories:
IEEE Access "A Process-aware memory compact-device model using long-short term memory"
- Categories:
Basil/Tulsi Plant is harvested in India because of some spiritual facts behind this plant,this plant is used for essential oil and pharmaceutical purpose. There are two types of Basil plants cultivated in India as Krushna Tulsi/Black Tulsi and Ram Tulsi/Green Tulsi.
Many of the investigator working on disease detection in Basil leaves where the following diseases occur
1) Gray Mold
2) Basal Root Rot, Damping Off
3) Fusarium Wilt and Crown Rot
- Categories:
The PD-BioStampRC21 dataset provides data from a wearable sensor
accelerometry study conducted for studying activity, gait, tremor, and
other motor symptoms in individuals with Parkinson's disease (PD). In
addition to individuals with PD, the dataset also includes data for
controls that also went through the same study protocol as the PD
participants. Data were acquired using lightweight MC 10 BioStamp RC
sensors (MC 10 Inc, Lexington, MA), five of which were attached to
each participant for gathering data over a roughly two day
interval.
- Categories:
As part of the 2018 IEEE GRSS Data Fusion Contest, the Hyperspectral Image Analysis Laboratory and the National Center for Airborne Laser Mapping (NCALM) at the University of Houston are pleased to release a unique multi-sensor optical geospatial representing challenging urban land-cover land-use classification task. The data were acquired by NCALM over the University of Houston campus and its neighborhood on February 16, 2017 between 16:31 and 18:18 GMT.
- Categories:
This dataset describes a collection of 700 different leaders throughout European history across 22 different states. Each leader is described by eight different categories of information: first name, last name/title, the century they ruled, the state in which they ruled, their formal position, their dynasty/family/political party, cause of death, and years of reign. This information can be used for training neural networks targeted at high level associative learning.
- Categories: