Dataset of rosbags collected during autonomous drone flight inside a warehouse of stockpiles. PCD files created using reconstruction method proposed by article.

Data still being move to IEEE-dataport. 

Instructions: 

Bag files contais multiple topics. Proposed method uses mainly Velodyne lidar pointcloud information and DJI imu

Categories:
496 Views

The data relates to a study to captured deciduous broadleaf Bidirectional Scattering Distribution Functions (BSDFs) from the visible through shortwave-infrared (SWIR) spectral regions (350-2500 nm) and accurately modeled the BSDF for extension to any illumination angle, viewing zenith, or azimuthal angle. Measurements were made from three species of large trees, Norway maple (Acer platanoides), American sweetgum (Liquidambar styraciflua), and northern red oak (Quercus rubra).

Instructions: 

There are three different file types in this database.  The first are .raw files that are ascii files of the estimated BSDF data from measurements (Note that the measurements are really bi-conical), the second are .py python files for reading, plotting, and fitting the data to a microfacet model.  The last file type are .txt files of the microfacet fit parameters previously found. 

Categories:
240 Views

The Dataset

The Onera Satellite Change Detection dataset addresses the issue of detecting changes between satellite images from different dates.

Instructions: 

Onera Satellite Change Detection dataset

 

##################################################

Authors: Rodrigo Caye Daudt, rodrigo.daudt@onera.fr

Bertrand Le Saux, bls@ieee.org

Alexandre Boulch, alexandre.boulch@valeo.ai

Yann Gousseau, yann.gousseau@telecom-paristech.fr

 

##################################################

About: This dataset contains registered pairs of 13-band multispectral satellite images obtained by the Sentinel-2 satellites of the Copernicus program. Pixel-level urban change groundtruth is provided. In case of discrepancies in image size, the older images with resolution of 10m per pixel is used. Images vary in spatial resolution between 10m, 20m and 60m. For more information, please refer to Sentinel-2 documentation.

 

For each location, folders imgs_1_rect and imgs_2_rect contain the same images as imgs_1 and imgs_2 resampled at 10m resolution and cropped accordingly for ease of use. The proposed split into train and test images is contained in the train.txt and test.txt files.

For downloading and cropping the images, the Medusa toolbox was used: https://github.com/aboulch/medusa_tb

For precise registration of the images, the GeFolki toolbox was used. https://github.com/aplyer/gefolki

 

##################################################

Labels: The train labels are available in two formats, a .png visualization image and a .tif label image. In the png image, 0 means no change and 255 means change. In the tif image, 0 means no change and 1 means change.

<ROOT_DIR>//cm/ contains: - cm.png - -cm.tif

Please note that prediction images should be formated as the -cm.tif rasters for upload and evaluation on DASE (http://dase.grss-ieee.org/).

(Update June 2020) Alternatively, you can use the test labels which are now provided in a separate archive, and compute standard metrics using the python notebook provided in this repo, along with a fulll script to train and classify fully-convolutional networks for change detection: https://github.com/rcdaudt/fully_convolutional_change_detection 

 

##################################################

Citation: If you use this dataset for your work, please use the following citation:

@inproceedings{daudt-igarss18,

author = {{Caye Daudt}, R. and {Le Saux}, B. and Boulch, A. and Gousseau, Y.},

title = {Urban Change Detection for Multispectral Earth Observation Using Convolutional Neural Networks},

booktitle = {IEEE International Geoscience and Remote Sensing Symposium (IGARSS'2018)},

venue = {Valencia, Spain},

month = {July},

year = {2018},

}

 

##################################################

Copyright: Sentinel Images: This dataset contains modified Copernicus data from 2015-2018. Original Copernicus Sentinel Data available from the European Space Agency (https://sentinel.esa.int).

Change labels: Change maps are released under Creative-Commons BY-NC-SA. For commercial purposes, please contact the authors.

 

Categories:
11740 Views

Emergency  managers  of  today  grapple  with  post-hurricane damage assessment that is often labor-intensive, slow,costly,   and   error-prone.   As   an   important   first   step   towards addressing  the   challenge,   this   paper   presents   the   development of  benchmark  datasets  to  enable  the  automatic  detection  ofdamaged buildings from post-hurricane remote sensing imagerytaken  from  both  airborne  and  satellite  sensors.  Our  work  has two  major  contributions:  (1)  we  propose  a  scalable  framework to  create  benchmark  datasets  of  hurricane-damaged  buildings

Instructions: 

Data can be used for object detection algorithms to properly annotate post disaster buildings as either damaged or non-damaged, aiding disaster response. This dataset contains ESRI Shapefiles of bounding boxes of buildings labeled as either damaged or non-damaged. Those labeled as damaged also have four degrees of damage from minor to catastrophic. Importantly, each bounding box is also indexed to one of the images in the NOAA post-Hurricane Harvey imagery dataset allowing users to match the bounding boxes with the correct imagery for training the algorithm. 

To make the NOAA imagery more manageable, images were processed and tiled into smaller 2048x2048 pixel ones. To obtain the same images please follow the steps below:

  1. Download the images from the NOAA page

  2. Tile the images using the tileTiff.py script (make sure the size is set to 2048 x 2048). All tiles will be in a subdirectory named “1”.

  3. This then creates the tiles that correspond to the image indexed in the shape files.

Important note: Not all bounding boxes in the shape file will map to an image. One will have to filter out bounding boxes which do not map to the images before feeding the data into any model.

Categories:
2453 Views

In tropical/subtropical regions, the favorable climate associated with the use of agricultural technologies, such as no-tillage, minimum cultivation, irrigation, early varieties, desiccants, flowering inducing and crop rotation, makes agriculture highly dynamic. In this paper, we present the Campo Verde agricultural database. The purpose of creating and sharing these data is to foster advancement of remote sensing technology in areas of tropical agriculture, primarily the development and testing of methods for crop recognition and agricultural mapping.

Categories:
1663 Views