This data set contains 100,000 pcd files taken by LiDAR, a 3-D image sensor, of a vehicle orbiting an indoor field.

Data Acquisition

The indoor field was built as a 1/60 scale model of an intersection, where two vehicles kept moving along pre-fixed tracks independently of each other.

The size of the vehicles was 0.040 m  × 0.035 m × 0.240 m 

We captured the indoor field by two LiDAR sensor units, which was commercialized by Velodyne.


We introduce HUMAN4D, a large and multimodal 4D dataset that contains a variety of human activities simultaneously captured by a professional marker-based MoCap, a volumetric capture and an audio recording system. By capturing 2 female and 2 male professional actors performing various full-body movements and expressions, HUMAN4D provides a diverse set of motions and poses encountered as part of single- and multi-person daily, physical and social activities (jumping, dancing, etc.), along with multi-RGBD (mRGBD), volumetric and audio data. Despite the existence of multi-view color datasets c


* At this moment, the paper of this dataset is under review. The dataset is going to be fully published along with the publication of the paper, while in the meanwhile, more parts of the dataset will be uploaded.

The dataset includes multi-view RGBD, 3D/2D pose, volumetric (mesh/point-cloud/3D character) and audio data along with metadata for spatiotemporal alignment.

The full dataset is splitted per subject and per activity per modality.

There are also two benchmarking subsets, H4D1 for single-person and H4D2 for two-person sequences, respectively.

The fornats are:

  • mRGBD: *.png
  • 3D/2D poses: *.npy
  • volumetric (mesh/point-cloud/): *.ply
  • 3D character: *.fbx
  • metadata: *.txt, *.json



Dataset of rosbags collected during autonomous drone flight inside a warehouse of stockpiles. PCD files created using reconstruction method proposed by article.

Data still being move to IEEE-dataport. 


Bag files contais multiple topics. Proposed method uses mainly Velodyne lidar pointcloud information and DJI imu


This dataset contains aerial images acquired with a medium format digital camera and point clouds collected using an airborne laser scanning (ALS) unit, as well as ground control points and direct georeferencing data. The flights were performed in 2014 over an urban area in Presidente Prudente, State of São Paulo, Brazil, using different flight heights. These flights covered several features of interest for research, including buildings of different sizes and roof materials, roads and vegetation.