ECG
This dataset is from our study that challenges the conventional interpretation of electrocardiogram (ECG) measurements, suggesting a paradigm shift in our understanding. Traditionally, ECGs are seen as reflections of the electric potential on the body's surface, but we propose an alternative hypothesis: ECGs may represent the gradient of the electric potential rather than the potential itself. To investigate this, we use computational methods based on the boundary element method (BEM) within the SCIRun numerical package.
- Categories:
The large number and scale of natural and man-made disasters have led to an urgent demand for technologies that enhance the safety and efficiency of search and rescue teams. Semi-autonomous rescue robots are beneficial, especially when searching inaccessible terrains, or dangerous environments, such as collapsed infrastructures. For search and rescue missions in degraded visual conditions or non-line of sight scenarios, radar-based approaches may contribute to acquire valuable, and otherwise unavailable information.
- Categories:
<p><span style="font-size: 10.0pt; font-family: 'Times New Roman',serif; mso-fareast-font-family: 'Times New Roman'; border: none windowtext 1.0pt; mso-border-alt: none windowtext 0in; padding: 0in; mso-ansi-language: EN-US; mso-fareast-language: EN-US; mso-bidi-language: AR-SA;">Many neurophysiological measurements are affected by mental state tasks.
- Categories:
This is a MATLAB-based tool to convert electrocardiography (ECG) waveforms from paper-based ECG records into digitized ECG signals that is vendor-agnostic. The tool is packaged as an open-source standalone graphical user interface (GUI) based application. This open-source digitization tool can be used to digitize paper ECG records thereby enabling new prediction
algorithms.
- Categories:
This is the dataset associated with the IEEE-JBHI submission "Synthesizing Electrocardiograms With Atrial Fibrillation Characteristics Using Generative Adversarial Networks". This dataset contains 4,768 synthesized atrial fibrillation (AF)-like ECG signals stored in PhysioNet MAT/HEA format.
- Categories:
For more information please take a look at the corresponding paper (DOI: 10.1109/JBHI.2019.2963786)
- Categories:
This dataset provides the ECG signals recorded in ambulatory (moving) conditions of subjects. The ambulatory ECG (A-ECG) data acquired with two different recorders viz. Biopac MP36 Acquisition system and a self-developed wearable ECG recorder are made available. Total 10 subjects' (with avg. age of 27 years, 1 female and 9 males) ECG signals with four body movements- Left & Right arm up/down, Sitting down & standing up and Waist twist are uploaded.
An EEG signals dataset is also provided here.
- Categories:
For research purposes, the ECG signals were obtained from the PhysioNet service (http://www.physionet.org) from the MIT-BIH Arrhythmia database. The created database with ECG signals is described below. 1) The ECG signals were from 29 patients: 15 female (age: 23-89) and 14 male (age: 32-89). 2) The ECG signals contained 17 classes: normal sinus rhythm, pacemaker rhythm, and 15 types of cardiac dysfunctions (for each of which at least 10 signal fragments were collected).
- Categories: