Human Activity Recognition (HAR) is the process of handling information from sensors and/or video capture devices under certain circumstances to correctly determine human activities. Nowadays, several simple and automatic HAR methods based on sensors and Artificial Intelligence platforms can be easily implemented.

In this challenge, participants are required to determine the nurse care daily activities by utilizing the accelerometer data collected from the smartphone, which is the cheapest and easy-to-implement way in real life.

Last Updated On: 
Sat, 05/08/2021 - 17:25
Citation Author(s): 
Sayeda Shamma Alia, Kohei Adachi, Paula Lago, Le Nhat Tan, Haru Kaneko, Sozo Inoue

The dataset consists of 751 videos, each containing the performance one of the handball actions out of 7 categories (passing, shooting, jump-shot, dribbling, running, crossing, defence). The videos were manually extracted from longer videos recorded in handball practice sessions. 

Instructions: 

The directory scenes/ contains the videos in mp4 format with actions of interest performed in context of other players present in the scene. The files are arranged in subdirectories according to the action class of the action of interest. The directory actions/ contains the videos of performances of actions by single players isolated from the videos in scenes directory. The files are arranged in subdirectories according to the performed action class. Files are named so that the beginning of the name matches the original video from which the action is extracted. The directory player_detections/ contains the object detections for each frame in the videos.

Categories:
36 Views

·       9/11 hijackers network dataset [20]: The 9/11 hijackers network incorporates 61 nodes (each node is a terrorist involved in 9/11 bombing at World Trade Centers in 2011). Dataset was prepared based on some news report, and ties range from ‘at school with’ to ‘on the same plane’. The Data consists of a mode matrix with 19*19 terrorist by terrorist having trusted prior contacts with 1 mode matrix of 61 edges of other involved associates.

Categories:
39 Views

The datasets in the compressed file were used in the case study of the article entitled Automated Machine Learning Pipeline for Geochemical Analysis by Germán H. Alférez, et al. Our approach was evaluated with a compositional dataset from 6 fault-separated blocks in the Peninsular Ranges Province and Transverse Ranges Province. The Peninsular Ranges are a group of mountain ranges, stretching from Southern California to Southern Baja California, Mexico. North of the Peninsular Ranges Province is the east-west Transverse Ranges Province.

Instructions: 

The Cinco.csv file contains the original dataset with 514 samples. The CincoTrain.csv file contains the dataset used to train and evaluate the models. The CincoUnknown.csv file contains the dataset used to predict the unknown samples.

Categories:
27 Views

For the task of detecting casualties and persons in search and rescue scenarios in drone images and videos, our database called SARD was built. The actors in the footage have simulate exhausted and injured persons as well as "classic" types of movement of people in nature, such as running, walking, standing, sitting, or lying down. Since different types of terrain and backgrounds determine possible events and scenarios in captured images and videos, the shots include persons on macadam roads, in quarries, low and high grass, forest shade, and the like.

Categories:
460 Views

The emerging 5G services offer numerous new opportunities for networked applications. In this study, we seek to answer two key questions: i) is the throughput of mmWave 5G predictable, and ii) can we build "good" machine learning models for 5G throughput prediction? To this end, we conduct a measurement study of commercial mmWave 5G services in a major U.S. city, focusing on the throughput as perceived by applications running on user equipment (UE).

Instructions: 

DATASET WEBSITE: https://lumos5g.umn.edu/

## OVERVIEW

Lumos5G 1.0 is a dataset that represents the `Loop` area of the IMC'20 paper - "Lumos5G: Mapping and Predicting Commercial mmWave 5G Throughput". The Loop area is a 1300 meter loop near U.S. Bank Stadium in Minneapolis downtown area that covers roads, railroad crossings, restaurants, coffee shops, and recreational outdoor parks.

This dataset is being made available to the research community.

## DATASET COLUMNS AND DESCRIPTION

The description of the columns in the dataset CSV, from left to right, are:

- `run_num`: Indicates the run number. For each trajectory and mobility mode, we conduct several runs of experiments.
- `seq_num`: This is the sequence number. For each run, the sequence number acts like an index or a per-second timeline.
- `abstractSignalStr`: Indicates the abstract signal strength as reported by Android API (https://developer.android.com/reference/android/telephony/SignalStrength...()). No matter whether the UE was connected to 5G service or not, this column always reported a value associated with the LTE/4G radio. Note, if one is interested to understand the signal strength values related to 5G-NR, we refer them to other columns such as `nr_ssRsrp`, `nr_ssRsrq`, and `nr_ssSinr`.
- `latitude`: The latitude in degrees as reported by Android's API (https://developer.android.com/reference/android/location/Location#getLat...()).
- `longitude`: The longitude in degrees as reported by Android's API (https://developer.android.com/reference/android/location/Location#getLon...()).
- `movingSpeed`: The ground mobility/moving speed of the UE as reported by Android's API (https://developer.android.com/reference/android/location/Location#getSpeed()). The unit is meters per second.
- `compassDirection`: The bearing in degrees as reported by Android's API (https://developer.android.com/reference/android/location/Location#getBea...()). Bearing is the horizontal direction of travel of this device, and is not related to the device orientation. It is guaranteed to be in the range `(0.0, 360.0]` if the device has a bearing.
- `nrStatus`: Indicates if the UE was connected to 5G network or not. When `nrStatus=CONNECTED`, the UE was connected to 5G. All other values of `nrStatus` such as `NOT_RESTRICTED` and `NONE` indicate the UE was not connected to 5G. `nrStatus` was obtained by parsing the raw string representation of `ServiceState` object (https://developer.android.com/reference/android/telephony/ServiceState#t...()).
- `lte_rssi`: Get Received Signal Strength Indication (RSSI) in dBm of the primary serving LTE cell. The value range is [-113, -51] inclusively or CellInfo#UNAVAILABLE if unavailable. Reference: TS 27.007 8.5 Signal quality +CSQ.
- `lte_rsrp`: Get reference signal received power (RSRP) in dBm of the primary serving LTE cell.
- `lte_rsrq`: Get reference signal received quality (RSRQ) of the primary serving LTE cell.
- `lte_rssnr`: Get reference signal signal-to-noise ratio (RSSNR) of the primary serving LTE cell.
- `nr_ssRsrp`: Obtained by parsing the raw string representation of `SignalStrength` object (https://developer.android.com/reference/android/telephony/SignalStrength...()). `nr_ssRsrp` was a field in this object's `CellSignalStrengthNr` section. In general, this value was only available when the UE was connected to 5G (i.e., when `nrStatus=CONNECTED`). Reference: 3GPP TS 38.215. Range: -140 dBm to -44 dBm.
- `nr_ssRsrq`: Obtained by parsing the raw string representation of `SignalStrength` object (https://developer.android.com/reference/android/telephony/SignalStrength...()). `nr_ssRsrq` was a field in this object's `CellSignalStrengthNr` section. In general, this value was only available when the UE was connected to 5G (i.e., when `nrStatus=CONNECTED`). Reference: 3GPP TS 38.215. Range: -20 dB to -3 dB.
- `nr_ssSinr`: Obtained by parsing the raw string representation of `SignalStrength` object (https://developer.android.com/reference/android/telephony/SignalStrength...()). `nr_ssSinr` was a field in this object's `CellSignalStrengthNr` section. In general, this value was only available when the UE was connected to 5G (i.e., when `nrStatus=CONNECTED`). Reference: 3GPP TS 38.215 Sec 5.1.*, 3GPP TS 38.133 10.1.16.1 Range: -23 dB to 40 dB
- `Throughput`: Indicates the throughput perceived by the UE. iPerf 3.7 was used to measure the per-second TCP downlink at the UE.
- `mobility_mode`: Indicates the grouth truth about the mobility mode when the experiment was conducted. This value can either be walking or driving.
- `trajectory_direction`: Indicates the ground truth about the trajectory direction of the experiment conducted at the Loop area. `CW` indicates clockwise direction, while `ACW` indicates anti-clockwise. Note, the driving experiments were only conducted in `CW` direction as certain parts of the loop were one way only. Walking-based experiments were conducted in both directions.
- `tower_id`: Indicates the (anonymized) tower identifier.

Note: We found that availability (and at times even the values) of `lte_rssi`, `nr_ssRsrp`, `nr_ssRsrq` and `nr_ssSinr` were not reliable. Since these values were sampled every second, at certain times (e.g., boundary cases), we might still find NR-related values when `nrStatus` is not equal to `CONNECTED`. However, in this dataset, we still include all the raw values as reported by the APIs.

## CITING THE DATASET

```
@inproceedings{10.1145/3419394.3423629,
author = {Narayanan, Arvind and Ramadan, Eman and Mehta, Rishabh and Hu, Xinyue and Liu, Qingxu and Fezeu, Rostand A. K. and Dayalan, Udhaya Kumar and Verma, Saurabh and Ji, Peiqi and Li, Tao and Qian, Feng and Zhang, Zhi-Li},
title = {Lumos5G: Mapping and Predicting Commercial MmWave 5G Throughput},
year = {2020},
isbn = {9781450381383},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
url = {https://doi.org/10.1145/3419394.3423629},
doi = {10.1145/3419394.3423629},
booktitle = {Proceedings of the ACM Internet Measurement Conference},
pages = {176–193},
numpages = {18},
keywords = {bandwidth estimation, mmWave, machine learning, Lumos5G, throughput prediction, deep learning, prediction, 5G},
location = {Virtual Event, USA},
series = {IMC '20}
}
```

## QUESTIONS?

Please feel free to contact the FiveGophers/Lumos5G team for questions or information about the data (arvind@cs.umn.edu,eman@cs.umn.edu,zhzhang@cs.umn.edu,fengqian@umn.edu,fivegophers@umn.edu)

## LICENSE

Lumos5G 1.0 dataset is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Categories:
94 Views

We conduct to our knowledge a first measurement study of commercial 5G performance on smartphones by closely examining 5G networks of three carriers (two mmWave carriers, one mid-band 5G carrier) in three U.S. cities. We conduct extensive field tests on 5G performance in diverse urban environments. We systematically analyze the handoff mechanisms in 5G and their impact on network performance, and explore the feasibility of using location and possibly other environmental information to predict the network performance.

Instructions: 

DATASET WEBSITE: https://fivegophers.umn.edu/www20/

## OVERVIEW

5Gophers 1.0 is a dataset collected when the world's very first commercial 5G services were made available to consumers. It should serve as a baseline to evaluate the 5G's performance evolution over time. Results using this dataset is presented in our measurement paper - "A First Look at Commercial 5G Performance on Smartphones".

This dataset is being made available to the research community.

## FILES and FOLDER STRUCTURE

All the files are in CSV format with headers that should hopefully be self-explainatory.

5Gophers-v1.0
├── All-Carriers
│   ├── 01-Throughput
│   ├── 02-Round-Trip-Times
│   └── 03-User-Mobility
└── mmWave-only
├── 03-UE-Panel (LoS Tests)
├── 04-Ping-Traces (Latency Tests)
├── 05-UE-Panel (NLoS Tests)
├── 06-UE-Panel (Orientation Tests)
├── 07-UE-Panel (Distance Tests)
├── 08-Web-Page-Load-Tests
├── 09-HTTPS-CDN-vs-NonCDN (Download Test)
└── 10-HTTP-vs-HTTPS (Download Test)

## CITING THE DATASET

```
@inproceedings{10.1145/3366423.3380169,
author = {Narayanan, Arvind and Ramadan, Eman and Carpenter, Jason and Liu, Qingxu and Liu, Yu and Qian, Feng and Zhang, Zhi-Li},
title = {A First Look at Commercial 5G Performance on Smartphones},
year = {2020},
isbn = {9781450370233},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
url = {https://doi.org/10.1145/3366423.3380169},
doi = {10.1145/3366423.3380169},
booktitle = {Proceedings of The Web Conference 2020},
pages = {894–905},
numpages = {12},
location = {Taipei, Taiwan},
series = {WWW ’20}
}
```

## QUESTIONS?

Please feel free to contact the FiveGophers team for information about the data (fivegophers@umn.edu, naray111@umn.edu)

## LICENSE

5Gophers 1.0 dataset is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Categories:
54 Views

Online Machine Learning for Energy-Aware Multicore Real-Time Embedded Systems Dataset is a Dataset composed of Hardware Performance Counters extracted from a Multicore Real-Time Embedded System. This Dataset encompasses every Monitorable Performance counters in a Cortex-A53 quad-core processor, totaling 54 performance counters, which are sampled periodically through a non-Intrusive Monitoring Framework implemented over Embedded Parallel Operating System (EPOS), a Real-Time Operating System.

Categories:
83 Views

We study the ability of neural networks to steer or control trajectories of dynamical systems on graphs, which we represent with neural ordinary differential equations (neural ODEs). To do so, we introduce a neural-ODE control (NODEC) framework and find that it can learn control signals that drive graph dynamical systems into desired target states. While we use loss functions that do not constrain the control energy, our results show that NODEC produces control signals that are highly correlated with optimal (or minimum energy) control signals.

Categories:
75 Views

Here we introduce so-far the largest subject-rated database of its kind, namely, "Effect of Sugarcane vegetation on path-loss between CC2650 and CC2538 SoC 32-bit Arm Cortex-M3 based sensor nodes operating at 2.4 GHz Radio Frequency (RF)".

Categories:
188 Views

Pages