IoT
The Development of an Internet of Things (IoT) Network Traffic Dataset with Simulated Attack Data.
Abstract— This research focuses on the requirements for and the creation of an intrusion detection system (IDS) dataset for an Internet of Things (IoT) network domain.
- Categories:
This dataset comprises sensory data of in and out miniature vehicle (mobile sink) movement in the agriculture fields. The dataset is collected from the miniature vehicle using a 9-axis Inertial Measurement Unit (IMU) sensor (MPU-9250) placed on the top of the vehicle. Though the vehicle is small but designed to handle all the hurdles of the agricultural land, such as rough and muddy surface. This dataset aims to facilitate appropriate path planning in the agricultural field for the automatic cultivation of seeds, manure spread, and nutrients insertion.
- Categories:
The provided dataset computes the exact analytical bit error rate (BER) of the NOMA system in the SISO broadcast channels with the assumption of i.i.d Rayleigh fading channels. The reader has to decide on the following input: 1) Number of users. 2) Modulation orders. 3) Power assignment. 4) Pathloss. 5) Transmit signal-to-noise ratio (SNR). The output is stored in a matrix where different rows are for different users while different columns are for different transmit SNRs.
- Categories:
In order to obtain the constants of our PID temperature controller, it was necessary to identify the system. The identification of the system allows us, through experimentation, to find the representation of the plant to be able to control it.
The first data with name "data_2.mat" represent the open loop test, where the sampling frequency is 100 [Hz], this data was useful to find the period of the pulse train generator, which is twice the slowest sampling time analyzed between the high pulse and low pulse of the input.
- Categories:
Dataset with diverse type of attacks in Programmable Logic Controllers:
1- Denial of Service
- Flooding
- Amplification/Volumetric
2- Man in the Middle
The full documentation of the dataset is available at: https://arxiv.org/abs/2103.09380
- Categories:
Datasets as described in the research paper "Intrusion Detection using Network Traffic Profiling and Machine Learning for IoT Applications".
There are two main dataset provided here, firstly is the data relating to the initial training of the machine learning module for both normal and malicious traffic, these are in binary visulisation format, compresed into the document traffic-dataset.zip.
- Categories:
Smart speakers and voice-based virtual assistants are core components for the success of the IoT paradigm. Unfortunately, they are vulnerable to various privacy threats exploiting machine learning to analyze the generated encrypted traffic. To cope with that, deep adversarial learning approaches can be used to build black-box countermeasures altering the network traffic (e.g., via packet padding) and its statistical information.
- Categories:
The dataset is collected for the purpose of investigating how brainwave signals can be used to industrial insider threat detection. The dataset was connected using Emotiv Insight 5 channels device. The dataset contains data from 17 subjects who accepted to participate in this data collection.
- Categories: