Skip to main content

Artificial Intelligence

  

About

Dataset described in: 

Daudt, R.C., Le Saux, B., Boulch, A. and Gousseau, Y., 2019. Multitask learning for large-scale semantic change detection. Computer Vision and Image Understanding, 187, p.102783.

 

This dataset contains 291 coregistered image pairs of RGB aerial images from IGS's BD ORTHO database. Pixel-level change and land cover annotations are provided, generated by rasterizing Urban Atlas 2006, Urban Atlas 2012, and Urban Atlas Change 2006-2012 maps. 

 

The dataset is split into five parts:

Categories:

The original dataset SECOM is obtained from the the UC Irvine Machine Learning Repository (https://archive.ics.uci.edu/ml/datasets/secom). Then, each
sample is transformed to an image, with each pixel representing a feature. Therefore, image processing mechanisms such as convolutionary neural networks can be utilized for classification.

Categories: