Artificial Intelligence

The Sketchy images refer to hand-drawn drawings, while SCIST are those with unclear or weak semantic information, represent a distinctive cases from natural scenes.The primary objective of this dataset is to facilitate the style transfer, whether originating from manual sketches or digital renderings, into enriched and artistically embellished counterparts through the utilization of software.

Categories:
198 Views

This dataset acompanies our article titled "Insights into traditional Large Deformation Diffeomorphic Metric Mapping and unsupervised deep-learning for diffeomorphic registration and their evaluation", Computers in Biology and Medicine, 2024. This paper explores the connections between traditional Large Deformation Diffeomorphic Metric Mapping methods and unsupervised deep-learning approaches for non-rigid registration, particularly emphasizing diffeomorphic registration.

Categories:
280 Views
Dataset of images of dragon fruit plants, collected from different media and taken from a dragon fruit field in Rio Branco, Brazil, with a total of 600 images
classified among 300 photos of sick plants, with fish eyes among others and 300 photos of healthy plants. For many of the photos, a simple smartphone 
camera was used to capture the images.

 

Categories:
1112 Views

Traditional authentication models are vulnerable to security breaches when personal data is exposed. This study introduces novel hybrid visual stimuli protocols integrating event-related potentials (ERP) and steady-state visually evoked potentials (SSVEP) to develop an authentication system that enhances both performance and personalization in neural interfaces. Our model utilizes distinctive neural patterns elicited by a range of visual stimuli based on 4-digit numbers, such as familiar numbers (personal birthdates, excluding targets), standard targets, and non-targets.

Categories:
35 Views

Traditional Thai medicine (TTM) is an increasingly popular treatment option. Tongue diagnosis is a highly efficient method for determining overall health, practiced by TTM practitioners. However, the diagnosis naturally varies depending on the practitioner's expertise. In this work, we propose tongue image analysis using raw pixels and artificial intelligence (AI) to support TTM diagnoses. The target classification of Tri-Dhat consists of three classes: Vata, Pitta, and Kapha. We utilize our own organized genuine datasets collected from our university's TTM hospital.

Categories:
416 Views

MHS

Existing datasets of infrared and visible images only contain few extreme scenes, we construct a dataset of images with haze based on the M3FD dataset. We pick 450 aligned image pairs from M3FD dataset and synthesize hazy visible images using the ASM. Due to the unique imaging principle of infrared images, rarely affected by haze, there is no need to do additional process for infrared images. Finally, a dataset named MHS has been released, which contains 450 pairs of images in hazy conditions.

Categories:
43 Views

Current neural network solutions for channel estimation are frequently tested by training and testing on one example channel or similar channels. However, data-driven algorithms often degrade significantly on other channels which they are not trained on, because they cannot extrapolate their training knowledge. Online training can fine-tune the offline-trained neural networks to compensate for this degradation, but its feasibility is challenged by the tremendous computational resources required.

Categories:
187 Views

We introduce an online-offline Iraquian hand-drawing dataset for early Parkinson’s disease detection, exclusively collected using smartphones, thus eliminating the need for specialized equipment like digitizing tablets and pens. Our dataset comprises data from 30 healthy individuals (17 men, 13 women) with an average age of 56 years (SD = 6.12) and 30 PD patients (23 men, 7 women) with an average age of 60 years (SD = 4.91), gathered at Marjan Hospital in Hilla, Babil Governorate, Iraq.

Categories:
609 Views


This dataset utilizes Asus RT-AC86U routers and nexmon tools to collect Channel State Information (CSI) data in a 7 by 5 meters meeting room furnished with typical furniture including a conference table, several chairs, and a locker. The data, stored in .pcap format, is accompanied by processing code on GitHub, enabling parsing into CSI matrix data stored in .npy format. Each CSI matrix contains amplitude and processed phase values for four channels, encompassing data from both external and internal antennas within the room.

Categories:
532 Views

Pages