Online Learning
With the continuous improvement in the computational capabilities of edge devices such as intelligent sensors in the Industrial Internet of Things, these sensors are no longer limited to mere data collection but are increasingly capable of performing complex computational tasks. This advancement provides both the motivation and the foundation for adopting distributed learning approaches. This study focuses on an industrial assembly line scenario where multiple sensors, distributed across various locations, sequentially collect real-time data characterized by distinct feature spaces.
- Categories:
This dataset used in the research paper "JamShield: A Machine Learning Detection System for Over-the-Air Jamming Attacks." The research was conducted by Ioannis Panitsas, Yagmur Yigit, Leandros Tassiulas, Leandros Maglaras, and Berk Canberk from Yale University and Edinburgh Napier University.
For any inquiries, please contact Ioannis Panitsas at ioannis.panitsas@yale.edu.
- Categories:
Please cite the following paper when using this dataset:
N. Thakur, K. Khanna, S. Cui, N. Azizi, and Z. Liu, “Mining and Analysis of Search Interests related to Online Learning Platforms from Different Countries since the Beginning of COVID-19” [Unpublished Paper - Paper submitted to HCI International 2023, Copenhagen, Denmark, 23-28 July 2023]
Brief Description of Dataset file - Interest_Dataset.csv:
Attribute Name: Week
- Categories:
Please cite the following paper when using this dataset:
N. Thakur, K. Khanna, S. Cui, N. Azizi, and Z. Liu, “Mining and Analysis of Search Interests related to Online Learning Platforms from Different Countries since the Beginning of COVID-19” [Unpublished Paper - Paper submitted to HCI International 2023, Copenhagen, Denmark, 23-28 July 2023]
Brief Description of Dataset file - Interest_Dataset.csv:
Attribute Name: Week
- Categories:
Please cite the following paper when using this dataset:
N. Thakur, K. Khanna, S. Cui, N. Azizi, and Z. Liu, “Mining and Analysis of Search Interests related to Online Learning Platforms from Different Countries since the Beginning of COVID-19”, Proceedings of the 25th International Conference on Human-Computer Interaction (HCII 2023), Copenhagen, Denmark, July 23-28, 2023 (Accepted for Publication)
Brief Description of Dataset file - Interest_Dataset.csv:
Attribute Name: Week
- Categories:
Please cite the following paper when using this dataset:
N. Thakur, K. Khanna, S. Cui, N. Azizi, and Z. Liu, “Mining and Analysis of Search Interests related to Online Learning Platforms from Different Countries since the Beginning of COVID-19” [Unpublished Paper - Paper submitted to HCI International 2023, Copenhagen, Denmark, 23-28 July 2023]
Brief Description of Dataset file - Interest_Dataset.csv:
Attribute Name: Week
- Categories:
This benchmark dataset accompanies an article paper titled ``Learning to Reuse Distractors to support Multiple Choice Question Generation in Education''. It contains a test of 298 educational questions covering multiple subjects & languages and a 77K multilingual pool of distractor vocabulary. The goal is for a given question to propose a list of relevant candidate distractors from the pool of distractors.
- Categories: