Machine Learning

This data set contains data collected from an overhead crane (https://doi.org/10.1109/WF-IoT.2018.8355217) OPC UA server when driving an L-shaped path with different loads (0kg, 120kg, 500kg, and 1000kg). Each driving cycle was driven with an anti-sway system activated and deactivated. Each driving cycle consisted of repeating five times the process of lifting the weight, driving from point A to point B along with the path, lowering the weight, lifting the weight, driving back to point A, and lowering the weight.

Categories:
348 Views

Dataset for segmentation of the defects on the surfaces of the military cartridge cases. The datasets with non-defective, defective and masked image classes of the defective cartridge cases.

Categories:
360 Views

UCI Wine quality

HK stock prices

Customer retail credit

Categories:
8 Views

Anonymous network traffic is more pervasive than ever due to the accessibility of services such as virtual private networks (VPN) and The Onion Router (Tor). To address the need to identify and classify this traffic, machine and deep learning solutions have become the standard. However, high-performing classifiers often scale poorly when applied to real-world traffic classification due to the heavily skewed nature of network traffic data.

Categories:
768 Views

Three real geological sensor data with missing values (namely, 45710421 x, 45710421 y, and 45710422 x).

Categories:
183 Views

This dataset accurately models the internal behavior of an IoT spectrum sensor (belonging to the ElectroSense platform and consisting of a Raspberry Pi 3 with a software-defined radio kit) when it is functioning normally and under attack. To accomplish it, the system calls of the IoT sensor are monitored under normal behavior, gathered, cleaned, and stored in a centralized directory. Then, the device is infected with current malware affecting IoT devices, such as the Bashlite botnet, Thetick backdoor, Bdvl rootkit, and a Ransomware proof of concept.

Categories:
1229 Views

The EegDot data set collected using a Cerebus neural signal acquisition equipment involed thirteen odor stimulating materials, five of which (smelling like rose (A), caramel (B), rotten (C), canned peach (D), and excrement (E)) were selected from the T&T olfactometer (from the Daiichi Yakuhin Sangyo Co., Ltd., Japan) and the remaining eight from essential oils (i.e., mint (F), tea tree (G), coffee (H), rosemary (I), jasmine (J), lemon (K), vanilla (L) and lavender (M)).

Categories:
331 Views

The EegDoc data set collected using a Cerebus neural signal acquisition equipment involved 2 types of odors (smelling like roses and rotten odors), each with 5 concentrations. Five concentrations of the rose odor are expressed as A10-3.0 (A30), A10-3.5 (A35), A10-4.0 (A40), A10-4.5 (A45) and A10-5.0 (A50), and five concentrations of the rotten odor are expressed as C10-4.0 (C40), C10-4.5 (C45), C10-5.0 (C50), C10-5.5 (C55) and C10-6.0 (C60).

Categories:
500 Views

This dataset contains a total of 160 vibration time-frequency maps and 160 corresponding label. The original signals were collected from 1.5 MW fans by a DAQ system with a sampling frequency of 16384 Hz in April 2021. There are four health states in the dataset, and each of them contains 4 gearboxes.

Categories:
723 Views

This repository contains code to apply the ESPER method to quasi-continuum models of biomolecules exhibiting multiple degrees of freedom, as described in Seitz et al. (2022, IEEE TCI). As inputs into ESPER, detailed instructions are also provided for generating custom synthetic datasets with increasing complexity to mirror known cryo-EM image attributes.

Categories:
185 Views

Pages