Mother’s Significant Feature (MSF) Dataset has been designed to provide data to researchers working towards woman and child health betterment. MSF dataset records are collected from the Mumbai metropolitan region in Maharashtra, India. Women were interviewed just after childbirth between February 2018 to March 2021. MSF comprise of 450 records with a total of 130 attributes consisting of mother’s features, father’s features and health outcomes. A detailed dataset is created to understand the mother’s features spread across three phases of her reproductive age i.e.

Instructions: 

We have provided the copy of forms used to collect data for datset and a read me guide to undertand the features provided in dataset along with the content of all the 6 dataset submitted in excel sheet format.

Categories:
132 Views

BIMCV-COVID19- dataset is a large dataset with chest X-ray images CXR (CR, DX) and computed tomography (CT) imaging of no COVID-19 patients along with their radiographic findings, pathologies, polymerase chain reaction (PCR), immunoglobulin G (IgG) and immunoglobulin M (IgM) diagnostic antibody tests and radiographic reports from Medical Imaging Databank in Valencian Region Medical Image Bank (BIMCV).

Instructions: 

Once all the compressed files have been downloaded, use 00_extract_data.sh for their correct decompression. For more information, you could see the links on this page.

Categories:
81 Views

BIMCV-COVID19+ dataset is a large dataset with chest X-ray images CXR (CR, DX) and computed tomography (CT) imaging of COVID-19 patients along with their radiographic findings, pathologies, polymerase chain reaction (PCR), immunoglobulin G (IgG) and immunoglobulin M (IgM) diagnostic antibody tests and radiographic reports from Medical Imaging Databank in Valencian Region Medical Image Bank (BIMCV).

Instructions: 

Once all the compressed files have been downloaded, use 00_extract_data.sh for their correct decompression. For more information, you could see the links on this page

Categories:
181 Views

Nextmed project is a software platform for the segmentation and visualization of medical images. It consist on a series of different automatic segmentation algorithms for different anatomical structures and  a platform for the visualization of the results as 3D models.

This dataset contains the .obj and .nrrd files that correspond to the results of applying our automatic lung segmentation algorithm to the LIDC-IDRI dataset.

This dataset relates to 718 of the 1012 LIDC-IDRI scans.

Instructions: 

The file consists in a folder for each result whith the .obj and .nrrd files generated by the Nextmed algorithms.

Categories:
302 Views

BMI Involvement when a person walks on the different surfaces of a building while he/she wants to get out of it in a specific survival time using graph theory to simulate the ways of a building.

Categories:
146 Views