BIMCV COVID-19-: a large annotated dataset of RX and CT images from COVID-19 patients

Citation Author(s):
Maria
de la Iglesia Vayá
Unidad Mixta de Imagen Biomédica FISABIO-CIPF
Jose Manuel
Saborit-Torres
Unidad Mixta de Imagen Biomédica FISABIO-CIPF
Joaquim Angel
Montell Serrano
Unidad Mixta de Imagen Biomédica FISABIO-CIPF
Elena
Oliver-Garcia
Unidad Mixta de Imagen Biomédica FISABIO-CIPF
Antonio
Pertusa
Universidad de Alicante, Spain
Aurelia
Bustos
Medbravo
Miguel
Cazorla
Hospital San Juan de Alicante, Spain
Joaquin
Galant
Universidad de Alicante, Spain
Xavier
Barber
Universidad Miguel Hernández, Spain
Domingo
Orozco-Beltrán
Universidad Miguel Hernández, Spain
Francisco
García-García
Unidad Mixta de Imagen Biomédica FISABIO-CIPF & Bioinformatics & Biostatistics Unit Principe Felipe Research Center, Valencia, Spain
Marisa
Caparrós
Unidad Mixta de Imagen Biomédica FISABIO-CIPF
Germán
González
Universidad de Alicante, Spain & Sierra Research SL
Jose María
Salinas
Unidad Mixta de Imagen Biomédica FISABIO-CIPF & Hospital San Juan de Alicante, Spain.
Submitted by:
Joaquim Montell...
Last updated:
Thu, 04/22/2021 - 05:59
DOI:
10.21227/m4j2-ap59
Data Format:
Links:
License:
0
0 ratings - Please login to submit your rating.

Abstract 

BIMCV-COVID19- dataset is a large dataset with chest X-ray images CXR (CR, DX) and computed tomography (CT) imaging of no COVID-19 patients along with their radiographic findings, pathologies, polymerase chain reaction (PCR), immunoglobulin G (IgG) and immunoglobulin M (IgM) diagnostic antibody tests and radiographic reports from Medical Imaging Databank in Valencian Region Medical Image Bank (BIMCV). The findings are mapped onto standard Unified Medical Language System (UMLS) terminology and they cover a wide spectrum of thoracic entities, contrasting with the much more reduced number of entities annotated in previous datasets. Images are stored in high resolution and entities are localized with anatomical labels in a Medical Imaging Data Structure (MIDS) format.

This work is first and foremost an open and free contribution from the authors in the working group with support from the Regional Ministry of Innovation, Universities, Science and Digital Society grant awarded through decree 51/2020 by the Valencian Innovation Agency (Spain) and Regional Ministry of Health in Valencia Region. This research is also supported by the University of Alicante’s UACOVID-19-18 project.

Part of the infrastructure used has been cofunded by the European Union through the Operational Program of the European Fund of Regional Development (FEDER) of the Valencian Community 2014-2020. The Medical Image Bank of the Valencian Community was partially funded by the European Union’s Horizon 2020 Framework Programme under grant agreement 688945 (Euro-BioImaging PrepPhase II).

 

This work is undertaken in the context of the DeepHealth project, “Deep-Learning and HPC to Boost Biomedical Applications for Health” (https://deephealth-project.eu/) which has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 825111”.

Instructions: 

Once all the compressed files have been downloaded, use 00_extract_data.sh for their correct decompression. For more information, you could see the links on this page.

Comments

Good

Submitted by Hari Priyanka C on Sun, 03/28/2021 - 13:09