Dementia classification from Magnetic Resonance Images by Machine Learning

Categories:
128 Views

BTH Trucks in Aerial Images Dataset contains videos of 17 flights across two industrial harbors' parking spaces over two years.

Instructions: 

If you use these provided data in a publication or a scientific paper, please cite the dataset accordingly.

Categories:
719 Views

This dataset contains the images used in the paper "Fine-tuning a pre-trained Convolutional Neural Network Model to translate American Sign Language in Real-time". M. E. Morocho Cayamcela and W. Lim, "Fine-tuning a pre-trained Convolutional Neural Network Model to translate American Sign Language in Real-time," 2019 International Conference on Computing, Networking and Communications (ICNC), Honolulu, HI, USA, 2019, pp. 100-104.

Instructions: 

The code is written for MATLAB. We used transfer learning using AlexNet and GoogLeNet as convolutional neural network (CNN) backbones.

In MATLAB, replace the directory path with yours. If you want to recognize other classes, just add the images from different classes on labeled folders.

Categories:
1045 Views

Conveyor belts are the most widespread means of transportation for large quantities of materials in the mining sector. This dataset contains 388 images of structures with and without dirt buildup.

One can use this dataset for experimentation on classifying the dirt buildup.

Instructions: 

The data are separated into folders that specify each class of the dataset: Clean and Dirty.

Categories:
317 Views

Since there is no image-based personality dataset, we used the ChaLearn dataset for creating a new dataset that met the characteristics we required for this work, i.e., selfie images where only one person appears and his face is visible, labeled with the person's apparent personality in the photo.

Instructions: 

Portrait Personality dataset of selfies based on the ChaLearn dataset First Impressions. This dataset consists of 30,935 selfies labeled with apparent personality. Each selfie file was named with the prefix of the original video followed by the frame's number. "bigfive_labels.csv" contains the labels for each trait of the Big Five model, using the prefix (name of the original video). Video frames and models are available at https://github.com/miguelmore/personality.

Categories:
1464 Views

As one of the research directions at OLIVES Lab @ Georgia Tech, we focus on the robustness of data-driven algorithms under diverse challenging conditions where trained models can possibly be depolyed. To achieve this goal, we introduced a large-sacle (~1.72M frames) traffic sign detection video dataset (CURE-TSD) which is among the most comprehensive datasets with controlled synthetic challenging conditions. The video sequences in the 

Instructions: 

The name format of the video files are as follows: “sequenceType_sequenceNumber_challengeSourceType_challengeType_challengeLevel.mp4”

·         sequenceType: 01 – Real data 02 – Unreal data

·         sequenceNumber: A number in between [01 – 49]

·         challengeSourceType: 00 – No challenge source (which means no challenge) 01 – After affect

·         challengeType: 00 – No challenge 01 – Decolorization 02 – Lens blur 03 – Codec error 04 – Darkening 05 – Dirty lens 06 – Exposure 07 – Gaussian blur 08 – Noise 09 – Rain 10 – Shadow 11 – Snow 12 – Haze

·         challengeLevel: A number in between [01-05] where 01 is the least severe and 05 is the most severe challenge.

Test Sequences

We split the video sequences into 70% training set and 30% test set. The sequence numbers corresponding to test set are given below:

[01_04_x_x_x, 01_05_x_x_x, 01_06_x_x_x, 01_07_x_x_x, 01_08_x_x_x, 01_18_x_x_x, 01_19_x_x_x, 01_21_x_x_x, 01_24_x_x_x, 01_26_x_x_x, 01_31_x_x_x, 01_38_x_x_x, 01_39_x_x_x, 01_41_x_x_x, 01_47_x_x_x, 02_02_x_x_x, 02_04_x_x_x, 02_06_x_x_x, 02_09_x_x_x, 02_12_x_x_x, 02_13_x_x_x, 02_16_x_x_x, 02_17_x_x_x, 02_18_x_x_x, 02_20_x_x_x, 02_22_x_x_x, 02_28_x_x_x, 02_31_x_x_x, 02_32_x_x_x, 02_36_x_x_x]

The videos with all other sequence numbers are in the training set. Note that “x” above refers to the variations listed earlier.

The name format of the annotation files are as follows: “sequenceType_sequenceNumber.txt“

Challenge source type, challenge type, and challenge level do not affect the annotations. Therefore, the video sequences that start with the same sequence type and the sequence number have the same annotations.

·         sequenceType: 01 – Real data 02 – Unreal data

·         sequenceNumber: A number in between [01 – 49]

The format of each line in the annotation file (txt) should be: “frameNumber_signType_llx_lly_lrx_lry_ulx_uly_urx_ury”. You can see a visual coordinate system example in our GitHub page.

·         frameNumber: A number in between [001-300]

·         signType: 01 – speed_limit 02 – goods_vehicles 03 – no_overtaking 04 – no_stopping 05 – no_parking 06 – stop 07 – bicycle 08 – hump 09 – no_left 10 – no_right 11 – priority_to 12 – no_entry 13 – yield 14 – parking

Categories:
2184 Views

As one of the research directions at OLIVES Lab @ Georgia Tech, we focus on the robustness of data-driven algorithms under diverse challenging conditions where trained models can possibly be depolyed.

Instructions: 

The name format of the provided images are as follows: "sequenceType_signType_challengeType_challengeLevel_Index.bmp"

  • sequenceType: 01 - Real data 02 - Unreal data

  • signType: 01 - speed_limit 02 - goods_vehicles 03 - no_overtaking 04 - no_stopping 05 - no_parking 06 - stop 07 - bicycle 08 - hump 09 - no_left 10 - no_right 11 - priority_to 12 - no_entry 13 - yield 14 - parking

  • challengeType: 00 - No challenge 01 - Decolorization 02 - Lens blur 03 - Codec error 04 - Darkening 05 - Dirty lens 06 - Exposure 07 - Gaussian blur 08 - Noise 09 - Rain 10 - Shadow 11 - Snow 12 - Haze

  • challengeLevel: A number in between [01-05] where 01 is the least severe and 05 is the most severe challenge.

  • Index: A number shows different instances of traffic signs in the same conditions.

Categories:
1584 Views

Our goal is to find whether a convolutional neural network (CNN) performs better than the existing blind algorithms for image denoising, and, if yes, whether the noise statistics has an effect on the performance gap. We performed automatic identification of noise distribution, over a set of nine possible distributions, namely, Gaussian, log-normal, uniform, exponential, Poisson, salt and pepper, Rayleigh, speckle and Erlang. Next, for each of these noisy image sets, we compared the performance of FFDNet, a CNN based denoising method, with noise clinic, a blind denoising algorithm.

Categories:
1584 Views

Device identification using network traffic analysis is being researched for IoT and non-IoT devices against cyber-attacks. The idea is to define a device specific unique fingerprint by analyzing the solely inter-arrival time (IAT) of packets as feature to identify a device. Deep learning is used on IAT signature for device fingerprinting of 58 non-IoT devices. We observed maximum recall and accuracy of 97.9% and 97.7% to identify device. A comparitive research GTID found using defined IAT signature that models of device identification are better than device type identification.

Instructions: 

All instructions are available at https://github.com/naneja/device-fingerprinting 

Categories:
496 Views

Pages