*.jpg
The lack of an objective and ready-to-use tool for preoperative planning in C2 pedicle screw placement surgery is notable. We developed C2-Net, a deep learning model for rapidly and accurately assessing C2 pedicle screw placement feasibility from CT images. C2-Net incorporates image segmentation and screw placement probability assessment modules.
- Categories:
In the captured image, a drone is seen in flight, displaying its advanced technological features and capabilities. The image highlights the drone's robust design and aerodynamic structure, which are essential for its diverse applications in research and development. Drones, also known as Unmanned Aerial Vehicles (UAVs), are increasingly being utilized in various fields due to their ability to collect data from hard-to-reach or hazardous areas.
- Categories:
The ability to train a robot to recognize human gestures is critical in enabling close proximity to Human-Robot Interaction (HRI). To that end, generating the appropriate dataset for the corresponding Machine Learning (ML) algorithm is essential. In this work, we introduced new datasets for hand gesture recognition. Given the complexity of generating thousands of physical hand gestures, we started with the basic hand gestures and developed additional synthetic gestures thus creating a comprehensive set.
- Categories:
According to US NOAA, unexploded ordnances (UXO) are ”explosive weapons such as bombs, bullets, shells, grenades, mines, etc. that did not explode when they were employed and still pose a risk of detonation”. UXOs are among the most dangerous, threats to human life, environment and wildlife protection as well as economic development. The risks associated with UXOs do not discriminate based on age, gender, or occupation, posing a danger to anyone unfortunate enough to encounter them.
- Categories:
Designing practical algorithms for damage detection in satellite images requires a substantial and well-labeled dataset for training, validation, and testing. In this paper, we collect GAZADeepDav: a high-resolution PlanetScope satellite imagery dataset with 7264 tiles for no damage and 6196 tiles for damage . This work is delving into the steps of collecting the dataset, Geotagging and employing deep learning architectures to distinguish damage in war zones while also providing valuable insights for researchers undertaking similar tasks in real-world applications.
- Categories:
One of the Dravidian language spoken majorly by 60 million people in and around Karnataka state of India is known as Kannada. It is one among 22 scheduled languages of India. Kannada langauge is written in Kannada scriptwhich has its traces back from kadamba script (325-550 AD). There are many languages which were used centuries back and aren’t being used currently whereas Kannada is one such language which is used even today for writing official documents and are being taught at schools which means it is going to be for many years.
- Categories:
DIRS24.v1 presents a dataset captured in campus environment. These images are curated suitably for the utilization in developing perception modules. These modules can be very well employed in Advanced Driver Assistance Systems (ADAS). The images of dataset are annotated in diversified formats such as COCO-MMDetection, Pascal-VOC, TensorFlow, YOLOv7-PyTorch, YOLOv8-Oriented Bounding Box, and YOLOv9.
- Categories:
the first digitalized mammogram dataset for breast cancer in Saudi Arabia, depend on the BI-RADS categories, to solve the availability problem of local public datasets by collecting, categorizing, and annotating mammogram images, supporting the medical field by providing physicians with different diagnosed cases especially in Saudi Arabia
- Categories:
For the semantic segmentation to be effectively done, a labelled flood scene image dataset was created. This initiative was undertaken with official permission obtained from the BBC News Website and YouTube channel, providing a valuable dataset for our research. We were granted permission to use flood-related videos for research purposes, ensuring ethical and legal considerations. Specifically, videos were sourced from the BBC News YouTube channel. The obtained videos were then processed to extract image frames, resulting in a dataset comprising 10,854 images.
- Categories:
Lorem Ipsum is simply dummy text of the printing and typesetting industry. Lorem Ipsum has been the industry's standard dummy text ever since the 1500s, when an unknown printer took a galley of type and scrambled it to make a type specimen book. It has survived not only five centuries, but also the leap into electronic typesetting, remaining essentially unchanged. It was popularised in the 1960s with the release of Letraset sheets containing Lorem Ipsum passages, and more recently with desktop publishing software like Aldus PageMaker including versions of Lorem Ipsum.
- Categories: