Skip to main content

Artificial Intelligence

The JKU-ITS AVDM contains data from 17 participants performing different tasks with various levels of distraction.
The data collection was carried out in accordance with the relevant guidelines and regulations and informed consent was obtained from all participants.
The dataset was collected using the JKU-ITS research vehicle with automated capabilities under different illumination and weather conditions along a secure test route within the

Categories:

This data set has been collected from a custom built battery prognostics testbed at the NASA Ames Prognostics Center of Excellence (PCoE). Li-ion batteries were run through 3 different operational profiles (charge, discharge and Electrochemical Impedance Spectroscopy) at different temperatures. Discharges were carried out at different current load levels until the battery voltage fell to preset voltage thresholds. Some of these thresholds were lower than that recommended by the OEM (2.7 V) in order to induce deep discharge aging effects.

Categories:

With the progress made in speaker-adaptive TTS approaches, advanced approaches have shown a remarkable capacity to reproduce the speaker’s voice in the commonly used TTS datasets. However, mimicking voices characterized by substantial accents, such as non-native English speakers, is still challenging. Regrettably, the absence of a dedicated TTS dataset for speakers with substantial accents inhibits the research and evaluation of speaker-adaptive TTS models under such conditions. To address this gap, we developed a corpus of non-native speakers' English utterances.

Categories:

Nasal Cytology, or Rhinology, is the subfield of otolaryngology, focused on the microscope observation of samples of the nasal mucosa, aimed to recognize cells of different types, to spot and diagnose ongoing pathologies. Such methodology can claim good accuracy in diagnosing rhinitis and infections, being very cheap and accessible without any instrument more complex than a microscope, even optical ones.

Categories:

Visual saliency prediction has been extensively studied in the context of standard dynamic range (SDR) display. Recently, high dynamic range (HDR) display has become popular, since HDR videos can provide the viewers more realistic visual experience than SDR ones. However, current studies on visual saliency of HDR videos, also called HDR saliency, are very few. Therefore, we establish an SDR-HDR Video pair Saliency Dataset (SDR-HDR-VSD) for saliency prediction on both SDR and HDR videos.

Categories:

QiandaoEar22 is a high-quality noise dataset designed for identifying specific ships among multiple underwater acoustic targets using ship-radiated noise. This dataset includes 9 hours and 28 minutes of real-world ship-radiated noise data and 21 hours and 58 minutes of background noise data.

Categories:

This database contains Synthetic High-Voltage Power Line Insulator Images.

There are two sets of images: one for image segmentation and another for image classification.

The first set contains images with different types of materials and landscapes, including the following landscape types: Mountains, Forest, Desert, City, Stream, Plantation. Each of the above-mentioned landscape types consists of 2,627 images per insulator type, which can be Ceramic, Polymeric or made of Glass, with a total of 47,286 distinct images.

Categories:
LGG Segmentation Dataset

This dataset contains brain MR images together with manual FLAIR abnormality segmentation masks.
The images were obtained from The Cancer Imaging Archive (TCIA).
They correspond to 110 patients included in The Cancer Genome Atlas (TCGA) lower-grade glioma collection with at least fluid-attenuated inversion recovery (FLAIR) sequence and genomic cluster data available.
Tumor genomic clusters and patient data is provided in data.csv file.

Categories: