Machine Learning

This is a protein negative interaction dataset, generated by our proposed method the “Features Dissimilarity-based Negative Generation” approach to generate protein negative sampling based on sequence data. It measures similarity of sequence characteristics without alignment based on Protein similarity. It achieved results of 97% compared to randomly generated negative dataset.

Categories:
603 Views

The dataset represents the input data on which the article Bayesian CNN-BiLSTM and Vine-GMCM Based Probabilistic Forecasting of Hour-Ahead Wind Farm Power Outputs, is based. The data consist of a two-year hourly time series of measured wind speed and direction, air density, and production of two wind farms (WTs) in Croatia (Bruška and Jelinak). In addition to the two listed WTs, measurements of two nearby WTs (Glunca and Zelengrad) are also attached in training files (these WPPs are not directly analyzed in the article).

Categories:
595 Views

This dataset maps mood to information about the events that influenced the mood. The dataset was obtained using a web-based data collection interface developed by us. The dataset consists of 5245 days of data from 134 participants in the experiment.

Categories:
764 Views

In this project, we propose a new comprehensive realistic cyber security dataset of IoT and IIoT applications, called Edge-IIoTset, which can be used by machine learning-based intrusion detection systems in two different modes, namely, centralized and federated learning. Specifically, the proposed testbed is organized into seven layers, including, Cloud Computing Layer, Network Functions Virtualization Layer, Blockchain Network Layer, Fog Computing Layer, Software-Defined Networking Layer, Edge Computing Layer, and IoT and IIoT Perception Layer.

Categories:
20727 Views

The millimeter-wave radar has the ability to sense the subtle movement of hand. However, the traditional hand gesture recognition methods are not robust in the scenario with dynamic interference. To address this issue, a robust hand gesture recognition method is proposed based on the self-attention time-series neural networks. Firstly, the original radar echo is constructed in terms of frame, sequence and channel at the input terminal of network.

Categories:
439 Views

The measurement and diagnosis of the severity of failures in rotating machines allow the execution of predictive maintenance actions on equipment. These actions make it possible to monitor the operating parameters of the machine and to perform the prediction of failures, thus avoiding production losses, severe damage to the equipment, and safeguarding the integrity of the equipment operators. This paper describes the construction of a dataset composed of vibration signals of a rotating machine.

Categories:
2613 Views

Power system state estimation (PSSE) plays a vital role in stable operation of modern smart grids, while it is vulnerable to cyber attacks. False data injection attacks (FDIA), one of the most common cyber attacks, can tamper with measurement data and bypass the bad data detection (BDD) mechanism, leading to incorrect PSSE results.

Categories:
1013 Views

One of the industries that uses Machine Learning is Radiation Oncology

Categories:
169 Views

Pages