generative adversarial networks

Machine learning (ML) in the medical domain faces challenges due to limited high-quality data. This study addresses the scarcity of echocardiography images (echoCG) by generating synthetic data using state-of-the-art generative models. We evaluated a cycle-consistent generative adversarial network (CycleGAN), contrastive unpaired translation (CUT) method, and latent diffusion model (Stable Diffusion 1.5).

Categories:
150 Views

Most of Facial Expression Recognition (FER) systems rely on machine learning approaches that require large databases (DBs) for an effective training. As these are not easily available, a good solution is to augment the DBs with appropriate techniques, which are typically based on either geometric transformation or deep learning based technologies (e.g., Generative Adversarial Networks (GANs)). Whereas the first category of techniques have been fairly adopted in the past, studies that use GAN-based techniques are limited for FER systems.

Categories:
2062 Views

The Magnetic Resonance – Computed Tomography (MR-CT) Jordan University Hospital (JUH) dataset has been collected after receiving Institutional Review Board (IRB) approval of the hospital and consent forms have been obtained from all patients. All procedures followed are consistent with the ethics of handling patients’ data.

Categories:
1698 Views

Our efforts are made on one-shot voice conversion where the target speaker is unseen in training dataset or both source and target speakers are unseen in the training dataset. In our work, StarGAN is employed to carry out voice conversation between speakers. An embedding vector is used to represent speaker ID. This work relies on two datasets in English and one dataset in Chinese, involving 38 speakers. A user study is conducted to validate our framework in terms of reconstruction quality and conversation quality.

Categories:
626 Views