Skip to main content

Neuroscience

Transcranial Magnetic Stimulation (TMS) is a neuromodulation procedure used to treat psychiatric and neurological disorders. When electroencephalography (EEG), a neuroimaging technique, is applied in conjunction with TMS, the analysis of resting-state EEG activity can be used to quantify functional connectivity (FC) in the brain. These modulations can then be related to a subject’s resting motor threshold (RMT), a baseline parameter in TMS therapy that determines the treatment intensity (dose) of subjects undergoing TMS.

Categories:

Natural wood is generally perceived as expensive, while wood-based boards are cheap, but research has yet to definitively explain why these two materials receive such disparate evaluations. This study aimed to uncover the reasons for this phenomenon by proposing an emotion-driven approach to material research. We collected ten types of natural wood and artificial boards as experimental samples and tested 20 subjects' subjective evaluations of the samples and physiological indicators (electroencephalography and electrodermal activity).

Categories:

We developed a unique and valuable dataset specifically for advancing Brain-Computer Interface (BCI) systems by recording brain activity from a dedicated volunteer. The participant was asked to pronounce 100 carefully selected Malayalam words, along with their English translations, which were chosen for their relevance to astronauts during human space missions. The volunteer pronounced these words both vocally and subvocally, each word being repeated 50 times. Non-invasive Electroencephalography (EEG) sensors were employed to capture the brain activity associated with these tasks.

Categories:

Brain-Computer Interface (BCI) is a technology that enables direct communication between the brain and external devices, typically by interpreting neural signals. BCI-based solutions for neurodegenerative disorders need datasets with patients’ native languages. However, research in BCI lacks insufficient language-specific datasets, as seen in Odia, spoken by 35-40 million individuals in India. To address this gap, we developed an Electroencephalograph (EEG) based BCI dataset featuring EEG signal samples of commonly spoken Odia words.

Categories:

This paper presents a dataset of brain Electroencephalogram (EEG) signals created when Malayalam vowels and consonants are spoken. The dataset was created by capturing EEG signals utilizing the OpenBCI Cyton device while a volunteer spoke Malayalam vowels and consonants. It includes recordings obtained from both sub-vocal and vocal. The creation of this dataset aims to support individuals who speak Malayalam and suffer from neurodegenerative diseases.

Categories:

Traditional authentication models are vulnerable to security breaches when personal data is exposed. This study introduces novel hybrid visual stimuli protocols integrating event-related potentials (ERP) and steady-state visually evoked potentials (SSVEP) to develop an authentication system that enhances both performance and personalization in neural interfaces. Our model utilizes distinctive neural patterns elicited by a range of visual stimuli based on 4-digit numbers, such as familiar numbers (personal birthdates, excluding targets), standard targets, and non-targets.

Categories:

To address the challenges faced by patients with neurodegenerative disorders, Brain-Computer Interface (BCI) solutions are being developed. However, many current datasets lack inclusion of languages spoken by patients, such as Telugu, which is spoken by over 90 million people in India. To bridge this gap, we have created a dataset comprising Electroencephalograph (EEG) signal samples of commonly used Telugu words. Using the Open-BCI Cyton device, EEG samples were captured from volunteers as they pronounced these words.

Categories:

This paper introduces a dataset capturing brain signals generated by the recognition of 100 Malayalam words, accompanied by their English translations. The dataset encompasses recordings acquired from both vocal and sub-vocal modalities for the Malayalam vocabulary. For the English equivalents, solely vocal signals were collected. This dataset is created to help Malayalam speaking patients with neuro-degenerative diseases.

Categories:

This is the supplementary document for the review paper titled “Comprehensive and Data-Driven Literature Review of Supernumerary Robotic Limbs,” which presents a comprehensive and data-driven review that offers a quantitative analysis of Supernumerary Robotic Limbs (SRLs), covering application areas, structural designs, control strategies, embodiments, and their interconnections.

Categories: