Machine Learning
The dataset created focuses on the Pakistan Military by collecting five types of entities from Wikipedia: weapons, ranks, dates, operations, and locations. An open-source NER annotator was utilized for annotation, ensuring accurate labeling of data. Post-annotation, the data underwent cleaning and balancing processes. The final dataset comprises 660 neutral and 660 anti-military sentiment samples, totaling 1320 samples. This balanced dataset serves as a valuable resource for sentiment analysis, providing insights into public sentiment regarding military-related topics.
- Categories:
The dataset includes Pakistan most popular YouTube videos for each category from year 2021- 2023. There are two kinds of data files, one includes video statistics and other one related to comments on those videos. They are linked by the unique video_id field. Both datasets are merged in final videos file which contains all videos statistics and sentiment extracted from comments. Here’s a breakdown of each column:
- Categories:
The detection of anomalous structures in natural image data is of utmost importance for numerous tasks in the field of computer vision. The development of methods for unsupervised anomaly detection requires data on which to train and evaluate new approaches and ideas. We introduce the MVTec Anomaly Detection (MVTec AD) dataset containing 5354 high-resolution color images of different object and texture categories. It contains normal, i.e., defect-free, images intended for training and images with anomalies intended for testing.
- Categories:
According to US NOAA, unexploded ordnances (UXO) are ”explosive weapons such as bombs, bullets, shells, grenades, mines, etc. that did not explode when they were employed and still pose a risk of detonation”. UXOs are among the most dangerous, threats to human life, environment and wildlife protection as well as economic development. The risks associated with UXOs do not discriminate based on age, gender, or occupation, posing a danger to anyone unfortunate enough to encounter them.
- Categories:
In the realm of global agriculture, the imperative of sustaining an ever-expanding population is met with challenges in optimizing crop production and judicious resource management. SmartzAgri heralds a groundbreaking approach to modern agriculture. This innovative system represents a convergence of machine learning algorithms and Internet of Things (IoT) technology, aimed at reshaping traditional paradigms of crop recommendation.
- Categories:
Modern automotive embedded systems include a large number of electronic control units (ECU) responsible for managing sophisticated systems such as engine control, ABS brake systems, traction control, and power steering systems. To ensure the reliability and effectiveness of these functions, it is essential to apply rigorous test approaches and standards. The integration of diagnostic functions in automotive embedded systems demands consistent tests and a detailed analysis of data.
- Categories:
The major language used on social media platforms is primarily dialectal, posing unique challenges for Natural Language Processing. To address this, a large, manually annotated corpus of approximately 30,500 Saudi dialect tweets in the food delivery app domain was introduced. The corpus was annotated with positive, negative, and neutral sentiment categories. Additionally, the existing SauDiSenti lexicon was expanded by 30%, providing an improved resource for sentiment analysis in the Saudi dialect. the corpus and expanded lexicon have been evaluated using machine learning classifiers.
- Categories: