Image Processing

The endmembers of a hyperspectral image (HSI) are more likely to be generated by independent sources and be mixed in a macroscopic degree before arriving at the sensor element of the imaging spectrometer as mixed spectra.

Categories:
549 Views

A custom made multispectral camera was used to collect a novel dataset of images of untreated lettuce leaves or leaves treated with vinegar, oil, or a combination of these. The camera captured image data at 10 wavelengths ∈[380nm,980nm] across the electromagnetic spectrum in the visible and NIR (near-infrared) regions. Imaging was done in a lab environment with the presence of ambient light.

Categories:
455 Views

This dataset is a collection of images and their respective labels containing examples of multiple Brazilian coins, the primary purpose is to support the development of Computer Vision techniques for automatic detection of such objects, i.e., localization and classification tasks. 

Categories:
1402 Views

This dataset is used for arbitrary-orientation scene text detection, recognition and spotting.

Categories:
223 Views

a example of sand dust image for test

Categories:
1192 Views

Dataset of rosbags collected during autonomous drone flight inside a warehouse of stockpiles. PCD files created using reconstruction method proposed by article.

Data still being move to IEEE-dataport. 

Categories:
1933 Views

The data files contains all the thermal images and error data of the spindle in the experiment.

Categories:
413 Views

  

About

Dataset described in: 

Daudt, R.C., Le Saux, B., Boulch, A. and Gousseau, Y., 2019. Multitask learning for large-scale semantic change detection. Computer Vision and Image Understanding, 187, p.102783.

 

This dataset contains 291 coregistered image pairs of RGB aerial images from IGS's BD ORTHO database. Pixel-level change and land cover annotations are provided, generated by rasterizing Urban Atlas 2006, Urban Atlas 2012, and Urban Atlas Change 2006-2012 maps. 

 

The dataset is split into five parts:

    - 2006 images 

Categories:
19275 Views

This is a dataset of 120 error-concealed video clips.  The clips were generated from 6 CIF, 6 HD and 6 Full-HD test video sequences. Each of those sequences was error concealed with 4 Error Concealment (EC) techniques: Motion Copy, Motion Vector Extrapolation, Decoder Motion Vector Estimation (DMVE) + Boundary Matching Algorithm (BMA), and Adaptive Error Concealment Order Determination (AECOD). The dataset also includes the original (loss free) video clips, as well as the subjective ranking of the error-concealed videos.

Categories:
425 Views

The original dataset SECOM is obtained from the the UC Irvine Machine Learning Repository (https://archive.ics.uci.edu/ml/datasets/secom). Then, each
sample is transformed to an image, with each pixel representing a feature. Therefore, image processing mechanisms such as convolutionary neural networks can be utilized for classification.

Categories:
729 Views

Pages