Image Processing
A custom made multispectral camera was used to collect a novel dataset of images of untreated lettuce leaves or leaves treated with vinegar, oil, or a combination of these. The camera captured image data at 10 wavelengths ∈[380nm,980nm] across the electromagnetic spectrum in the visible and NIR (near-infrared) regions. Imaging was done in a lab environment with the presence of ambient light.
- Categories:
This dataset is a collection of images and their respective labels containing examples of multiple Brazilian coins, the primary purpose is to support the development of Computer Vision techniques for automatic detection of such objects, i.e., localization and classification tasks.
- Categories:
This dataset is used for arbitrary-orientation scene text detection, recognition and spotting.
- Categories:
The data files contains all the thermal images and error data of the spindle in the experiment.
- Categories:
About
Dataset described in:
Daudt, R.C., Le Saux, B., Boulch, A. and Gousseau, Y., 2019. Multitask learning for large-scale semantic change detection. Computer Vision and Image Understanding, 187, p.102783.
This dataset contains 291 coregistered image pairs of RGB aerial images from IGS's BD ORTHO database. Pixel-level change and land cover annotations are provided, generated by rasterizing Urban Atlas 2006, Urban Atlas 2012, and Urban Atlas Change 2006-2012 maps.
The dataset is split into five parts:
- 2006 images
- Categories:
This is a dataset of 120 error-concealed video clips. The clips were generated from 6 CIF, 6 HD and 6 Full-HD test video sequences. Each of those sequences was error concealed with 4 Error Concealment (EC) techniques: Motion Copy, Motion Vector Extrapolation, Decoder Motion Vector Estimation (DMVE) + Boundary Matching Algorithm (BMA), and Adaptive Error Concealment Order Determination (AECOD). The dataset also includes the original (loss free) video clips, as well as the subjective ranking of the error-concealed videos.
- Categories:
The original dataset SECOM is obtained from the the UC Irvine Machine Learning Repository (https://archive.ics.uci.edu/ml/datasets/secom). Then, each
sample is transformed to an image, with each pixel representing a feature. Therefore, image processing mechanisms such as convolutionary neural networks can be utilized for classification.
- Categories: