Skip to main content

IIoT

This dataset, denoted as 𝑾_data, represents a synthetic yet structurally authentic warehouse management dataset comprising 4,132 records and 11 well-defined attributes. It was generated using the Gretel.ai platform, following the structural standards provided by the TI Supply Chain API–Storage Locations specification. The dataset encapsulates essential operational and spatial parameters of warehouses, including unique identifiers, geospatial coordinates, storage capacities, and categorical capacity statuses.

Categories:

Most machine learning (ML) proposals in the Internet of Things (IoT) space are designed and evaluated on pre-processed datasets, where the data acquisition and cleaning steps are often considered a black box. Therefore, the data acquisition stage requires additional data cleaning/anomaly techniques, which translate to additional resources, energy, and storage.

Categories:

This data set contains data collected from an overhead crane (https://doi.org/10.1109/WF-IoT.2018.8355217) OPC UA server when driving an L-shaped path with different loads (0kg, 120kg, 500kg, and 1000kg). Each driving cycle was driven with an anti-sway system activated and deactivated. Each driving cycle consisted of repeating five times the process of lifting the weight, driving from point A to point B along with the path, lowering the weight, lifting the weight, driving back to point A, and lowering the weight.

Categories: