fall detection

A specially designed waist-worn device with accelerometer, gyroscope, and pressure sensor was utilized to collect information about 18 ADLs and 16 fall types. The falls protocol has been performed in our lab to replicate realistic situations that typically affect workers and older people. In contrast to other datasets that are accessible to the public, we included a new task in the falls, syncope, since it has a high mortality rate among the elderly and is linked to falls. As such, we must take it into account and include it in our fall detection system.

Categories:
289 Views

This is a dataset for TCS-Fall.
A total of 20 volunteers were invited to take part in the experiment. Each volunteer performed hundreds of falls and non-falls.
All fall data and non-fall data are stored in binary files that can be parsed by Python or matlab.

Categories:
226 Views

Current radar fall detection techniques based on deep learning (DL) networks are often too complex for real-time detection. This paper proposes a real-time fall detection approach by reducing the complexity of the DL networks and the UWB radar hardware requirements. A multi-indoor scene behaviour dataset of 40 subjects is established using K-band UWB radar. A sliding window-based dataflow augmentation method is proposed to augment and balance the given datasets.

Categories:
57 Views

Any work using this dataset should cite this paper as follows:

Nirmalya Thakur and Chia Y. Han, "Country-Specific Interests towards Fall Detection from 2004–2021: An Open Access Dataset and Research Questions", Journal of Data, Volume 6, Issue 8, pp. 1-21, 2021.

Abstract

Categories:
1854 Views

FallAllD is a large open dataset of human falls and activities of daily living simulated by 15 participants. FallAllD consists of 26420 files collected using three data-loggers worn on the waist, wrist and neck of the subjects. Motion signals are captured using an accelerometer, gyroscope, magnetometer and barometer with efficient configurations that suit the potential applications e.g. fall detection, fall prevention and human activity recognition.

Categories:
9818 Views