Machine Learning
In practical media distribution systems, visual content usually undergoes multiple stages of quality degradation along the delivery chain, but the pristine source content is rarely available at most quality monitoring points along the chain to serve as a reference for quality assessment. As a result, full-reference (FR) and reduced-reference (RR) image quality assessment (IQA) methods are generally infeasible. Although no-reference (NR) methods are readily applicable, their performance is often not reliable.
- Categories:
In practical media distribution systems, visual content usually undergoes multiple stages of quality degradation along the delivery chain, but the pristine source content is rarely available at most quality monitoring points along the chain to serve as a reference for quality assessment. As a result, full-reference (FR) and reduced-reference (RR) image quality assessment (IQA) methods are generally infeasible. Although no-reference (NR) methods are readily applicable, their performance is often not reliable.
- Categories:
The dataset is generated from the ice-cream factory simulation environmen that is composed of six modules (Mixer, Pasteurizer, Homogenizer, Aeging Cooling, Dynamic Freezer, and Hardening). The values of analog sensors for level and temperature are modified using three anomaly injection options: freezing value, step change and ramp change. The dataset is composed of 1000 runs, out of which 258 were executed without anomalies.
Link to github: https://github.com/vujicictijana/MIDAS
- Categories:
In nighttime driving scenes, due to insufficient and uneven lighting, and the scarcity of high-quality datasets, the miss rate of nighttime pedestrian detection (PD) is much higher than that of daytime. Vision-based distance detection (DD) has the advantages of low cost and good interpretability, but the existing methods have low precision, poor robustness, and the DD is mostly performed independently of PD.
- Categories:
This dataset file is used for the study of imbalanced data and contains 6 imbalanced datasets
- Categories:
Tea chrysanthemums can provide many components that are beneficial to human health. However, the harvesting process is time-consuming and labor-intensive. In the future, tea chrysanthemums harvesting can be done by machines. The first step towards automated harvesting is the detection of tea chrysanthemums, which are highly dependent on the quantity and quality of datasets. In a natural environment, a strain of chrysanthemum can present multiple flower heads in different stages and sizes.
- Categories: