GeoTiffs

The Contest: Goals and Organization

The 2022 IEEE GRSS Data Fusion Contest, organized by the Image Analysis and Data Fusion Technical Committee, aims to promote research on semi-supervised learning. The overall objective is to build models that are able to leverage a large amount of unlabelled data while only requiring a small number of annotated training samples. The 2022 Data Fusion Contest will consist of two challenge tracks:

Track SLM:Semi-supervised Land Cover Mapping

Last Updated On: 
Mon, 03/07/2022 - 04:41

The Dataset

We introduce a novel large-scale dataset for semi-supervised semantic segmentation in Earth Observation: the MiniFrance suite.

Categories:
6446 Views

The Dataset

The Onera Satellite Change Detection dataset addresses the issue of detecting changes between satellite images from different dates.

Categories:
30748 Views

This database is a image set of a strongest glint-affected region of inland water Capivara reservoir, Brazil. We carried out a flight survey in September 2016 on the confluence region of the Tibagi and Paranapanema Rivers. We use the hyperspectral camera manufactured by Rikola, model FPI2014, wich collect 25 spectral bands at following intervals and full widths at half maximum (FWHM), both expressed in nanometers (nm):

 

Categories:
776 Views

Emergency  managers  of  today  grapple  with  post-hurricane damage assessment that is often labor-intensive, slow,costly,   and   error-prone.   As   an   important   first   step   towards addressing  the   challenge,   this   paper   presents   the   development of  benchmark  datasets  to  enable  the  automatic  detection  ofdamaged buildings from post-hurricane remote sensing imagerytaken  from  both  airborne  and  satellite  sensors.  Our  work  has two  major  contributions:  (1)  we  propose  a  scalable  framework to  create  benchmark  datasets  of  hurricane-damaged  buildings

Categories:
4544 Views