*.csv; *.pcap; *.txt; *.zip

The advancements in the field of telecommunications have resulted in an increasing demand for robust, high-speed, and secure connections between User Equipment (UE) instances and the Data Network (DN). The implementation of the newly defined 3rd Generation Partnership Project 3GPP (3GPP) network architecture in the 5G Core (5GC) represents a significant leap towards fulfilling these demands. This architecture promises faster connectivity, low latency, higher data transfer rates, and improved network reliability.


The dataset comprises of several files that contain smart grid communication, namely protocols IEC 60870-104 (IEC 104) and IEC 61850 (MMS) in form of CSV traces. The traces were generated from PCAP files using IPFIX flow probe or an extraction script. CSV traces include the timestamp, IP addresses and ports of communicating devices, and selected IEC 104 and MMS headers that are interesting for security monitoring and anomaly detection. Datasets were by obtained partly by monitoring communication of real ICS devices and partly by monitoring communication of virtual ICS applications.


In this project, we propose a new comprehensive realistic cyber security dataset of IoT and IIoT applications, called Edge-IIoTset, which can be used by machine learning-based intrusion detection systems in two different modes, namely, centralized and federated learning. Specifically, the proposed testbed is organized into seven layers, including, Cloud Computing Layer, Network Functions Virtualization Layer, Blockchain Network Layer, Fog Computing Layer, Software-Defined Networking Layer, Edge Computing Layer, and IoT and IIoT Perception Layer.