Communications

Appendix data for paper
- Categories:
As an alternative to classical cryptography, Physical Layer Security (PhySec) provides primitives to achieve fundamental security goals like confidentiality, authentication or key derivation. Through its origins in the field of information theory, these primitives are rigorously analysed and their information theoretic security is proven. Nevertheless, the practical realizations of the different approaches do take certain assumptions about the physical world as granted.
- Categories:

This survey covers more than 150 published papers related to sub-6 GHz wideband LNAs from IEEE publications such as ISSCC, JSSC, TMTT, RFIC, MWCL, TCAS and NEWCAS published in the last 20 years. The considered LNAs are classified according to the technology node and its topology. The presented database is a useful tool for investigating technology trends and comparing the performance of common LNA design styles.
- Categories:
The emerging 5G services offer numerous new opportunities for networked applications. In this study, we seek to answer two key questions: i) is the throughput of mmWave 5G predictable, and ii) can we build "good" machine learning models for 5G throughput prediction? To this end, we conduct a measurement study of commercial mmWave 5G services in a major U.S. city, focusing on the throughput as perceived by applications running on user equipment (UE).
- Categories:
We conduct to our knowledge a first measurement study of commercial 5G performance on smartphones by closely examining 5G networks of three carriers (two mmWave carriers, one mid-band 5G carrier) in three U.S. cities. We conduct extensive field tests on 5G performance in diverse urban environments. We systematically analyze the handoff mechanisms in 5G and their impact on network performance, and explore the feasibility of using location and possibly other environmental information to predict the network performance.
- Categories:
This dataset contains thousands of Channel State Information (CSI) samples collected using the 64-antenna KU Leuven Massive MIMO testbed. The measurements focused on four different antenna array topologies; URA LoS, URA NLoS, ULA LoS and, DIS LoS. The users channel is collected using CNC-tables, resulting in a dataset where all samples are provided with a very accurate spatial label. The user position is sweeped across a 9 squared meter area, halting every 5 millimeter, resulting in a dataset size of 252,004 samples for each measured topology.
- Categories:
This dataset contains the measurement data of a channel sounding campaign in the hull of a bulk carrier vessel at mmWave frequency 60.48 GHz. The directive radio channel for Line-of-Sight (LOS) communication is measured using the Terragraph channel sounder. An antenna beam width dependent PL model is created. At mmWave frequencies, LOS PL in the vessel is close to PL in a free space environment, but angular spread values are lower compared to other indoor scenarios.
The processing results of these measurements are presented in the following two papers.
- Categories:
This dataset was created for the following paper: Seonghoon Jeong, Boosun Jeon, Boheung Chung, and Huy Kang Kim, "Convolutional neural network-based intrusion detection system for AVTP streams in automotive Ethernet-based networks," Vehicular Communications, DOI: 10.1016/j.vehcom.2021.100338.
- Categories:
The MIMOSigRef-SD dataset was created with the goal to support the research community in the design and development of novel multiple-input multiple-ouotput (MIMO) transceiver architectures. It was recorded using software radios as transmitters and receivers, and a wireless channel emulator to facilitate a realistic representation of a variety of different channel environments and conditions.
- Categories:
Accurate and efficient anomaly detection is a key enabler for the cognitive management of optical networks, but traditional anomaly detection algorithms are computationally complex and do not scale well with the amount of monitoring data. Therefore, this dataset enables research on new optical spectrum anomaly detection schemes that exploit computer vision and deep unsupervised learning to perform optical network monitoring relying only on constellation diagrams of received signals.
- Categories: