Image Processing

The data set are images taken from the Particle Image Velocimetry (PIV) method and the Planar Laser-Induced Fluorescence (PLIF) method. These methods set out the macro-scale experimental techniques that can enable fluid dynamic knowledge to inform molecular communication performance and design. Fluid dynamic experiments can capture latent features that allow the receiver to detect coherent signal structures and infer transmit parameters for optimal decoding.
- Categories:
This dataset contains light-field microscopy images and converted sub-aperture images.
The folder with the name "Light-fieldMicroscopeData" contains raw light-field data. The file LFM_Calibrated_frame0-9.tif contains 9 frames of raw light-field microscopy images which has been calibrated. Each frame corresponds to a specific depth. The 9 frames cover a depth range from 0 um to 32 um with step size 4 um. Files with name LFM_Calibrated_frame?.png are the png version for each frame.
- Categories:

Experimental results.
- Categories:
Since there is no image-based personality dataset, we used the ChaLearn dataset for creating a new dataset that met the characteristics we required for this work, i.e., selfie images where only one person appears and his face is visible, labeled with the person's apparent personality in the photo.
- Categories:
We provide a dataset with synthetic white images for the Lytro Illum light field camera with precisely known microlens center coordinates.
The dataset consists of white images taken at different zoom settings as well as different microlens array offset and rotation.
The white images have been raytraced using a thin lens-based camera model. The synthesized white images incorporate natural as well as mechanical vignetting effects.
- Categories:

n/a
- Categories:
Calibration datasets used in the article Standard Plenoptic Cameras Mapping to Camera Arrays and Calibration based on DLT. These datasets were acquired with a Lytro Illum camera using two calibration grids with different sizes: 8 × 6 grid of 211 × 159 mm (Big Pattern) with approximately 26.5 mm cells, and 20×20 grid of 121.5 × 122 mm (Small Pattern) with approximately 6.1 mm cells. Each dataset acquired is composed of 66 fully observable poses of the calibration pattern.
- Categories: