Remote sensing of environment research has explored the benefits of using synthetic aperture radar imagery systems for a wide range of land and marine applications since these systems are not affected by weather conditions and therefore are operable both daytime and nighttime. The design of image processing techniques for  synthetic aperture radar applications requires tests and validation on real and synthetic images. The GRSS benchmark database supports the desing and analysis of algorithms to deal with SAR and PolSAR data.

Last Updated On: 
Tue, 02/08/2022 - 17:46
Citation Author(s): 
Nobre, R. H.; Rodrigues, F. A. A.; Rosa, R.; Medeiros, F.N.; Feitosa, R., Estevão, A.A., Barros, A.S.

Anemia is a condition in which the oxygen-carrying capacity of red blood cells is insufficient to meet the body's physiological needs and affects billions of people worldwide. An early diagnosis of this disease could prevent the advancement of other disorders. Currently, traditional methods used to detect anemia consist of venipuncture, which requires a patient to frequently visit laboratories. Therefore, anemia diagnosis using noninvasive and cost effective methods is an open challenge.


The dataset used in the paper "A Deep Learning Approach for Segmentation, Classification and Visualization of 3D High Frequency Ultrasound Images of Mouse Embryos" is provided here. It contains both the segmentation and classification images with manual labels. 


Intracellular organelle networks such as the endoplasmic reticulum (ER) network and the mitochondrial network serve crucial physiological functions. Morphology of these networks plays critical roles in mediating their functions.Accurate image segmentation is required for analyzing morphology of these networks for applications such as disease diagnosis and drug discovery. Deep learning models have shown remarkable advantages in accurate and robust segmentation of these complex network structures.


This dataset is used to develop an algorithm for automatic segmenting the collected signals. When machining a workpiece in a milling process, vibration signals can be recorded by a 3-axis accelerometer, which is attached on the spindle of a CNC milling machine. To segment the recorded signals, a moving window (0.5 sec) is applied to sample the vibration signals and manually labeled the corresponding modes, i.e. dry run or milling, of each window. To verify the algorithm, 3 types of operations are provided and recorded in csv format. 


Pathologic Myopia Challenge (PALM), as a part of the serial challenge iChallenge, is organized as a half day Challenge, a Satellite Event of the ISBI 2019 conference in Venice, Italy. The PALM challenge focuses on the investigation and development of algorithms associated with the diagnosis of Pathological Myopia (PM) and segmentation of lesions in fundus photos from PM patients. The goal of the challenge is to evaluate and compare automated algorithms for the detection of pathological myopia on a common dataset of retinal fundus images.


This dataset is a companion to a paper, "Segmentation Convolutional Neural Networks for Automatic Crater Detection on Mars" by DeLatte et al. 2019. DOI link:


These are the segmentation target files for the three targets described in the paper: solid filled, thicker edge, and thinner edge.