intrusion detection systems

This dataset is used to illustrate an application of the "klm-based profiling and preventing security attack (klm-PPSA)" system. The klm-PPSA system is developed to profile, detect, and then prevent known and/or unknown security attacks before a user access a cloud. This dataset was created based on “a.patrik” user logical attempts scenarios when accessing his cloud resources and/or services. You will find attached the CSV file associated with the resulted dataset. The dataset contains 460 records of 13 attributes (independent and dependent variables).


The network attacks are increasing both in frequency and intensity with the rapid growth of internet of things (IoT) devices. Recently, denial of service (DoS) and distributed denial of service (DDoS) attacks are reported as the most frequent attacks in IoT networks. The traditional security solutions like firewalls, intrusion detection systems, etc., are unable to detect the complex DoS and DDoS attacks since most of them filter the normal and attack traffic based upon the static predefined rules.