5G-NR is beginning to be widely deployed in the mmWave frequencies in urban areas in the US and around the world. Due to the directional nature of mmWave signal propagation, improving performance of such deployments heavily relies on beam management and deployment configurations.
The emerging 5G services offer numerous new opportunities for networked applications. In this study, we seek to answer two key questions: i) is the throughput of mmWave 5G predictable, and ii) can we build "good" machine learning models for 5G throughput prediction? To this end, we conduct a measurement study of commercial mmWave 5G services in a major U.S. city, focusing on the throughput as perceived by applications running on user equipment (UE).
We conduct to our knowledge a first measurement study of commercial 5G performance on smartphones by closely examining 5G networks of three carriers (two mmWave carriers, one mid-band 5G carrier) in three U.S. cities. We conduct extensive field tests on 5G performance in diverse urban environments. We systematically analyze the handoff mechanisms in 5G and their impact on network performance, and explore the feasibility of using location and possibly other environmental information to predict the network performance.