Machine Learning
Dynamic Spectrum Sharing (DSS) is an enabler for a seamless transition from 4G Long TermEvolution (LTE) to 5G New Radio (NR) by utilizing existing LTE bands without static spectrum re-farming. In this paper, we propose a cross-band DSS scheme that utilizes the Multimedia BroadcastMulticast Service over a Single Frequency Network (MBSFN) feature of an LTE network and theMulticast Broadcast Service (MBS) feature of an NR network.
- Categories:
Dynamic Spectrum Sharing (DSS) is an enabler for a seamless transition from 4G Long TermEvolution (LTE) to 5G New Radio (NR) by utilizing existing LTE bands without static spectrum re-farming. In this paper, we propose a cross-band DSS scheme that utilizes the Multimedia BroadcastMulticast Service over a Single Frequency Network (MBSFN) feature of an LTE network and theMulticast Broadcast Service (MBS) feature of an NR network.
- Categories:
The dataset that we published in this data repository can be used to build neural networks-based inverse kinematics for NAO robot arms. This dataset is named ARKOMA. ARKOMA is an acronym for ARif eKO MAuridhi, all of whom are the creators of this dataset. This dataset contains input-output data pairs. In this dataset, the input data is the end-effector position and orientation, while the output data is a set of joint angular positions. For further applications, this dataset was split into the training dataset, validation dataset, and testing dataset.
- Categories:
<p>Ten individuals in good health were enlisted to execute 16 distinct movements involving the wrist and fingers in real-time. Before commencing the experimental procedure, explicit consent was obtained from each participant. Participants were informed that they had the option to withdraw from the study at any point during the experimental session. The experimental protocol adhered to the principles outlined in the Declaration of Helsinki and received approval from the local ethics committee at the National University of Sciences and Technology, Islamabad, Pakistan.
- Categories:
This dataset contains MRI data acquired approximately 20 minutes before ("Pre-ablation") and 20-40 minutes after ("Post-ablation") MR-guided focused ultrasound thermal ablations in the muscle tissue (quadriceps) in four (n=4) New Zealand white rabbits. MR images include MR thermometry acquired with the proton resonance frenquency method, ADC maps (b=0,400), T2-weighted, and pre- and post-contrast enhanced T1-weighted images. All MRI acquisitions were 3D except for the ADC acquisition, which was 2D multi-slice.
- Categories:
As communications service providers ponder ways to cater to the diverse traffic requirements of mobile applications that range from the classic telephony to modern augmented reality (AR)-related use cases, the traditional quality of service (QoS)-based radio resource management (RRM) techniques for RAN slicing that are agnostic to the intrinsic workings of applications can result in a poor quality of experience (QoE) for the end-user. We argue that in addition to QoS, RAN slicing strategies should also consider QoE for efficient resource utilization.
- Categories:
The uploaded dataset appears to be related to various composite materials, and it includes the following columns:
- Categories:
Blade damage inspection without stopping the normal operation of wind turbines has significant economic value. This study proposes an AI-based method AQUADA-Seg to segment the images of blades from complex backgrounds by fusing optical and thermal videos taken from normal operating wind turbines. The method follows an encoder-decoder architecture and uses both optical and thermal videos to overcome the challenges associated with field application.
- Categories:
A recent study [1] alerts on the limitations of evaluating anomaly detection algorithms on popular time-series datasets such as Yahoo, Numenta, or NASA, among others. In particular, these datasets are noted to suffer from known flaws suchas trivial anomalies, unrealistic anomaly density, mislabeled ground truth, and run-to-failure bias. The TELCO dataset corresponds to twelve different time-series, with a temporal granularity of five minutes per sample, collected and manually labeled for a period of seven months between January 1 and July 31, 2021.
- Categories: