Image Processing

As part of the 2018 IEEE GRSS Data Fusion Contest, the Hyperspectral Image Analysis Laboratory and the National Center for Airborne Laser Mapping (NCALM) at the University of Houston are pleased to release a unique multi-sensor optical geospatial representing challenging urban land-cover land-use classification task. The data were acquired by NCALM over the University of Houston campus and its neighborhood on February 16, 2017 between 16:31 and 18:18 GMT.
- Categories:

With the rapid development of augmented reality
- Categories:

With the rapid development of augmented reality
- Categories:
Fast optical 3D inline inspection sensors are a powerful tool to advance factory automation. Many of these visual inspection tasks require high speeds, resolutions and repeatability. Different approaches exist. Stereo vision, photometric stereo, light sectioning and structured light are the most common principles for inline imaging in the several micrometers to sub-millimeter resolution range.
- Categories:

....
- Categories:

....
- Categories:
Semantic segmentation is the topic of interest among deep learning researchers in the recent era. It has many applications in different domains including, food recognition. In the case of food recognition, it removes the non-food background from the food portion. There is no large public food dataset available to train semantic segmentation models. We prepared a dataset named ’SEG-FOOD’[44] containing images of FOOD101, PFID, and Pakistani Food dataset and open-sourced the annotated dataset for future research. We annotated the images using JS Segment annotator.
- Categories:
A medium-scale synthetic 4D Light Field video dataset for depth (disparity) estimation. From the open-source movie Sintel. The dataset consists of 24 synthetic 4D LFVs with 1,204x436 pixels, 9x9 views, and 20–50 frames, and has ground-truth disparity values, so that can be used for training deep learning-based methods. Each scene was rendered with a clean pass after modifying the production file of Sintel with reference to the MPI Sintel dataset.
- Categories: