Natural Language Processing

Within the Natural Language Processing (NLP) framework, Named Entity Recognition (NER) is regarded as the basis for extracting key information to understand texts in any language. As Bangla is a highly inflectional, morphologically rich, and resource-scarce language, building a balanced NER corpus with large and diverse entities is a demanding task. However, previously developed Bangla NER systems are limited to recognizing only three familiar entities: person, location, and organization.
- Categories:

This benchmark dataset accompanies an article paper titled ``Learning to Reuse Distractors to support Multiple Choice Question Generation in Education''. It contains a test of 298 educational questions covering multiple subjects & languages and a 77K multilingual pool of distractor vocabulary. The goal is for a given question to propose a list of relevant candidate distractors from the pool of distractors.
- Categories:

The dialogue corpus is described in the paper "Anticipating User Intentions in Customer Care Dialogue Systems" and contains a selection of human-chatbot Italian dialogues concerning customer-care requests.
In order to preserve the privacy and company data property, we removed the actual sentences and we present only the annotation described in the paper.
- Categories:
The greatest challenge of machine learning problems is to select suitable techniques and resources such as tools and datasets. Despite the existence of millions of speakers around the globe and the rich literary history of more than a thousand years, it is expensive to find the computational linguistic work related to Punjabi Shahmukhi script, a member of the Perso-Arabic context-specific script low-resource language family. The selection of the best algorithm for a machine learning problem heavily depends on the availability of a dataset for that specific task.
- Categories:
Aspect Sentiment Triplet Extraction (ASTE) is an Aspect-Based Sentiment Analysis subtask (ABSA). It aims to extract aspect-opinion pairs from a sentence and identify the sentiment polarity associated with them. For instance, given the sentence ``Large rooms and great breakfast", ASTE outputs the triplet T = {(rooms, large, positive), (breakfast, great, positive)}. Although several approaches to ASBA have recently been proposed, those for Portuguese have been mostly limited to extracting only aspects without addressing ASTE tasks.
- Categories:

Dataset asscociated with a paper in 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems
"Talk the talk and walk the walk: Dialogue-driven navigation in unknown indoor environments"
If you use this code or data, please cite the above paper.
- Categories:

The General Data Protection Regulation (GDPR), adopted in 2018, profoundly impacts information processing organizations as they must comply with this regulation. In this research, we consider GDPR-compliance as a high-level goal in software development that should be addressed at the offset of software development, meaning during requirements engineering (RE). In this work, we hypothesize that Natural Language Processing (NLP) can offer a viable means to automate this process.
- Categories:
Wine has been popular with the public for centuries; in the market, there are a variety of wines to choose from. Among all, Bordeaux, France, is considered as the most famous wine region in the world. In this paper, we try to understand Bordeaux wines made in the 21st century through Wineinformatics study. We developed and studied two datasets: the first dataset is all the Bordeaux wine from 2000 to 2016; and the second one is all wines listed in a famous collection of Bordeaux wines, 1855 Bordeaux Wine Official Classification, from 2000 to 2016.
- Categories:

The age of Artificial Intelligence (AI) is coming. Since Natural Language Processing (NLP) is a core AI technology for communication between humans and devices, it is vital to understand technological trends. Early research on NLP focused on syntactic processing such as information extraction and subject modeling but later developed into the semantic-oriented analysis. To analyze technological trends concerning NLP, especially semantic analysis, patent data that contains objective and extensive information is analyzed.
- Categories: