big data analytics

The dataset contains:
1. We conducted a A 24-hour recording of ADS-B signals at DAB on 1090 MHz with USRP B210 (8 MHz sample rate). In total, we got the signals from more than 130 aircraft.
2. An enhanced gr-adsb, in which each message's digital baseband (I/Q) signals and metadata (flight information) are recorded simultaneously. The output file path can be specified in the property panel of the ADS-B decoder submodule.
3. Our GnuRadio flow for signal reception.
4. Matlab code of the paper, wireless device identification using the zero-bias neural network.


We obtained 6 million instances to be used as an analysis for modelling CO2 behavior. The Data Logging and sensors nodes acquisition are every 1 second.


We introduce a benchmark of distributed algorithms execution over big data. The datasets are composed of metrics about the computational impact (resource usage) of eleven well-known machine learning techniques on a real computational cluster regarding system resource agnostic indicators: CPU consumption, memory usage, operating system processes load, net traffic, and I/O operations. The metrics were collected every five seconds for each algorithm on five different data volume scales, totaling 275 distinct datasets.