This Matlab model and the included results are submitted as reference for the paper ''. 

Presenting a comparative study of the Sequential Unscented Kalman Filter (SUKF), Least-squares (LS) Multilateration and standard Unscented Kalman Filter (UKF) for localisation that relies on sequentially received datasets. 

The KEWLS and KKF approach presents a novel solution using Linear Kalman Filters (LKF) to extrapolate individual sensor measurements to a synchronous point in time for use in LS Multilateration. 



The data provided here correspond to the TPWRS paper presenting a novel  filter design procedure to optimally split the Frequency Regulation (FR) signal between conventional and fast regulating Energy Storage System (ESS) assets, considering typical Communication Delays (CDs).  The filter is then integrated into a previously validated FR model of the Ontario Power System (OPS) including Battery and Flywheel ESSs, which is used to analyze the impact of these ESSs, CDs, and limited regulation capacity in the FR process in a real system.  The proposed methodology to split the


In order to obtain the constants of our PID temperature controller, it was necessary to identify the system. The identification of the system allows us, through experimentation, to find the representation of the plant to be able to control it.

The first data with name "data_2.mat" represent the open loop test, where the sampling frequency is 100 [Hz], this data was useful to find the period of the pulse train generator, which is twice the slowest sampling time analyzed between the high pulse and low pulse of the input. 


The EEG pain dataset was collected from 15 subjects using Cold pressor test (CPT), and EEG signals were recorded using the Emotiv EPOC Flex Cap (32 channels) with 32 electrodes placed over the scalp at predetermined locations based on the International Electroencephalographic Society (10-10), with a frequency of 128 Hz.


Recently, surface electromyography (sEMG) emerged as a novel biometric authentication method. Since EMG system parameters, such as the feature extraction methods and the number of channels, have been known to affect system performances, it is important to investigate these effects on the performance of the sEMG-based biometric system to determine optimal system parameters.


The purpose of this data collection was for the validation of a cuffless blood pressure estimation model during activities of daily living. Data were collected on five young healthy individuals (four males, age 28 ± 6.6 yrs) of varied fitness levels, ranging from sedentary to regularly active, and free of cardiovascular and peripheral vascular disease. Arterial blood pressure was continuously measured using finger PPG (Portapres; Finapres Medical Systems, the Netherlands).


This dataset contains a created ST annotations for all recordings of Abdominal and Direct Fetal ECG Database (ADFECGDB).




These .MAT files contain MATLAB Tables of raw and preprocessed data. Information detailing the bed system used to collect these signals and the steps used to create the preprocessed data are contained in a publication in Sensors – Carlson, C.; Turpin, V.-R.; Suliman, A.; Ade, C.; Warren, S.; Thompson, D.E.; Bed-Based Ballistocardiography: Dataset and Ability to Track Cardiovascular Parameters. Sensors 2021, 21, 156.

The reBAP signal is scaled at 100 mmHg/volt. The interbeat interval (IBI), stroke volume (SV), and dP/dt_max are scaled at 1000 ms/volt, 100 mL/volt, and 1 mHg/s/volt, respectively.


Acoustic measurement data from Multilayer Ceramic Capacitors (MLCCs). Contains preprocessed data from intact and damaged MLCCs for damage detection (classification) purposes.


Contains acoustic measurement data from 180 multilayer ceramic capacitors (2220 case size, 22 uF, 24V), soldered onto two test circuit boards. The measurements were performed by placing a piezoelectric point contact sensor on top of each capacitor, and subjecting the MLCC to a voltage frequency sweep from 100 Hz to 2 MHz over a duration of 100 ms. The resulting acoustic waveforms have been denoised, bandpass filtered, and downsampled. Furthermore, instantaneous phase response was calculated for each MLCC.

The dataset contains measurements from both intact and mechanically damaged components for quality assurance purposes (classification task). The acoustic signature of each MLCC is represented by an eight-dimensional feature vectror in the file inputs.mat:

  1. Acoustic emission amplitude at the highest resonace peak
  2. Frequency of the highest resonance peak
  3. Amplitude of the second-highest resonance peak
  4. Frequency of the second-highest resonance peak
  5. Total phase shift during frequency sweep
  6. Median amplitude of 10 of the highest resonance peaks
  7. Median frequency of 10 of the highest resonance peaks
  8. Mean group delay ripple calculated from the phase response of each component

The labels (0=no damage; 1=damage) for each component are found in targets.mat. Note that the labelling process was done by cross-sectioning each component and inspecting the sample visually under a microscope. Therefore, the labels may not be completely accurate, as the signs of damage can be difficult to observe.



This dataset contains 1944 data, which are scanned by the HIS-RING PACT system.

the data sampling rate of our system is 40 MSa/s, a 128-elements 2.5MHz full-view ring-shaped transducer with 30mm radius. 

 continuous updating.....