*.jpg

An image dataset including five types of weather conditions (cloudy, sunny, foggy, rainy and snowy) was constructed.

 This dataset, called FWID, includes 4000 images for each weather category, leading to a total of 20000 images. 

Categories:
4052 Views

As one of the research directions at OLIVES Lab @ Georgia Tech, we focus on the robustness of data-driven algorithms under diverse challenging conditions where trained models can possibly be depolyed. To achieve this goal, we introduced a large-sacle (1.M images) object recognition dataset (CURE-OR) which is among the most comprehensive datasets with controlled synthetic challenging conditions. In CURE

Categories:
1919 Views

We proposed a new dataset, HazeRD, for benchmarking dehazing algorithms under realistic haze conditions. As opposed to prior datasets that made use of synthetically generated images or indoor images with unrealistic parameters for haze simulation, our outdoor dataset allows for more realistic simulation of haze with parameters that are physically realistic and justified by scattering theory. 

Categories:
4479 Views

Pages