Wearable Sensing

This repository introduces a novel dataset for the classification of Chronic Obstructive Pulmonary Disease (COPD) patients and Healthy Controls. The Exasens dataset includes demographic information on 4 groups of saliva samples (COPD-HC-Asthma-Infected) collected in the frame of a joint research project, Exasens (https://www.leibniz-healthtech.de/en/research/projects/bmbf-project-exasens/), at the Research Center Borstel, BioMaterialBank Nord (Borstel, Germany).

Categories:
3230 Views

The data set is collected from MyNeuroHealth Application developed for the detection of Seizures and Falls. Data is gathered using tri-axial accelerometer placed at the upper left arm of an individual in an unconstraint environment.

Categories:
1701 Views

This dataset provides the magneto-inertial signals from six MIMU (2 Xsens, 2 APDM, 2 Shimmer) and orientation from 8 reflective markers (VICON) at 3 different speeds (slow, medium, fast). Marker trajectories are provided. Proprietary orientations from MIMU vendors are also included. All data are synchronized at 100 Hz.

Categories:
1781 Views

This dataset consists of sensory data of digits, i.e., from 0 to 9. The dataset is collected from 20 volunteers by using a 9−axis Inertial Measurement Unit (IMU) equipped marker pen. The objective of this dataset is to design classification algorithms for recognizing a handwritten digit in real-time.

Categories:
2184 Views

The dataset comprises up to two weeks of activity data taken from the ankle and foot of 14 people without amputation and 17 people with lower limb amputation.  Walking speed, cadence, and lengths of strides taken at and away from the home were considered in this study.  Data collection came from two wearable sensors, one inertial measurement unit (IMU) placed on the top of the prosthetic or non-dominant foot, and one accelerometer placed on the same ankle.  Location information was derived from GPS and labeled as ‘home’, ‘away’, or ‘unknown’.  The dataset contains raw acce

Categories:
1730 Views

FallAllD is a large open dataset of human falls and activities of daily living simulated by 15 participants. FallAllD consists of 26420 files collected using three data-loggers worn on the waist, wrist and neck of the subjects. Motion signals are captured using an accelerometer, gyroscope, magnetometer and barometer with efficient configurations that suit the potential applications e.g. fall detection, fall prevention and human activity recognition.

Categories:
9644 Views

Synergistic prostheses enable the coordinated movement of the human-prosthetic arm, as required by activities of daily living. This is achieved by coupling the motion of the prosthesis to the human command, such as residual limb movement in motion-based interfaces. Previous studies demonstrated that developing human-prosthetic synergies in joint-space must consider individual motor behaviour and the intended task to be performed, requiring personalisation and task calibration.

Categories:
421 Views

Ear-EEG recording collects brain signals from electrodes placed in the ear canal. Compared with existing scalp-EEG,  ear-EEG is more wearable and user-comfortable compared with existing scalp-EEG.

Categories:
2377 Views

This dataset features cooking activities with recipes and gestures labeled. The data has been collected using two smartphones (right arm and left hip), two smartwatches (both wrists) and one motion capture system with 29 markers. There were 4 subjects who prepared 3 recipes (sandwich, fruit salad, cereal) 5 times each. The subjects followed a script for each recipe but acted as naturally as possible

Categories:
2300 Views

The CLAS (Cognitive Load, Affect and Stress) dataset was conceived as a freelyaccessible repository which is purposely developed to support research on the automated assessment of certain states of mind and the emotional condition of a person.

Categories:
8530 Views

Pages