Domain Adaptation.
In recent years, the success of large-scale visionlanguage models (VLMs) such as CLIP has led to their increased usage in various computer vision tasks. These models enable zero-shot inference through carefully crafted instructional text prompts without task-specific supervision. However, the potential of VLMs for generalization tasks in remote sensing (RS) has not been fully realized. To address this research gap, we propose a novel image-conditioned prompt learning strategy called the Visual Attention Parameterized Prompts Learning Network (APPLeNet).
- Categories:
In this investigation, the researchers have used a commercially available millimeter-wave (MMW) radar to collect data and assess the performance of deep learning algorithms in distinguishing different objects. The research looks at how varied ambiance factors, such as height, distance, and lighting, affect object recognition ability in both static and dynamic stages of the radar.
- Categories: