EEG

This study investigated neural mechanisms underlying working memory by employing a visual n-back task with graded cognitive load (0-back to 3-back). Ten healthy volunteers (6 males, 4 females; mean age 23.3 ± 0.9 years) participated, performing a spatial matching task where they judged whether the current position of a displayed square matched the position presented n trials earlier, responding via keypress ("V" for match, "N" for non-match).
- Categories:
Synthetic EEG Dataset for CNN Training: Clean and Artifact-Contaminated Signals
This dataset consists of synthetically generated EEG and EMG signals designed for training Convolutional Neural Networks (CNNs) in artifact detection and removal. The dataset includes both clean EEG signals and EEG signals contaminated with simulated EMG artifacts from various sources.
- Categories:
Synthetic Epileptic Spike EEG Database (SESED-WUT)
The database contains EEG, EMG, and EOG signals with artificially generated epileptic spikes. The recordings were performed using the g.USBamp 2.0 amplifier. Data were collected from 5 EEG channels (C3, Cz, C4, Fz, Fp1), 1 EOG channel (VEOG), and 3 EMG channels (Nape, Cheek, Jaw). The signals were sampled at 256 Hz and processed with a bandpass filter (0.1–100 Hz) and a notch filter (48–52 Hz).
- Categories:

The dataset consists of EEG recorded non-invasively from five participants while they are performing a handwriting imagery task, in which each participant was instructed to imagine the process of handwriting the 26 English letters. Major preprocessing steps have been conducted, including large-amplitude artifact removal using Independent Component Analysis and bandpass filtering between 0.1-45 Hz.
- Categories:
We developed a unique and valuable dataset specifically for advancing Brain-Computer Interface (BCI) systems by recording brain activity from a dedicated volunteer. The participant was asked to pronounce 100 carefully selected Malayalam words, along with their English translations, which were chosen for their relevance to astronauts during human space missions. The volunteer pronounced these words both vocally and subvocally, each word being repeated 50 times. Non-invasive Electroencephalography (EEG) sensors were employed to capture the brain activity associated with these tasks.
- Categories:

In this study, we collected EEG and EMG data from 16 subjects during the MI process and constructed a homemade MI-hBCI dataset. The participants included 10 males (mean age: 22.3±3.1 years) and 6 females (mean age: 22.1±2.4 years). All the subjects were right-handed, had normal vision, and had no motor impairment; all the participants signed a consent form and were informed of the experimental procedure and precautions before the experiment.
- Categories:
This paper presents a dataset of brain Electroencephalogram (EEG) signals created when Malayalam vowels and consonants are spoken. The dataset was created by capturing EEG signals utilizing the OpenBCI Cyton device while a volunteer spoke Malayalam vowels and consonants. It includes recordings obtained from both sub-vocal and vocal. The creation of this dataset aims to support individuals who speak Malayalam and suffer from neurodegenerative diseases.
- Categories:
To address the challenges faced by patients with neurodegenerative disorders, Brain-Computer Interface (BCI) solutions are being developed. However, many current datasets lack inclusion of languages spoken by patients, such as Telugu, which is spoken by over 90 million people in India. To bridge this gap, we have created a dataset comprising Electroencephalograph (EEG) signal samples of commonly used Telugu words. Using the Open-BCI Cyton device, EEG samples were captured from volunteers as they pronounced these words.
- Categories:
This paper introduces a dataset capturing brain signals generated by the recognition of 100 Malayalam words, accompanied by their English translations. The dataset encompasses recordings acquired from both vocal and sub-vocal modalities for the Malayalam vocabulary. For the English equivalents, solely vocal signals were collected. This dataset is created to help Malayalam speaking patients with neuro-degenerative diseases.
- Categories: