Machine Learning
UCI Wine quality
HK stock prices
Customer retail credit
- Categories:
Anonymous network traffic is more pervasive than ever due to the accessibility of services such as virtual private networks (VPN) and The Onion Router (Tor). To address the need to identify and classify this traffic, machine and deep learning solutions have become the standard. However, high-performing classifiers often scale poorly when applied to real-world traffic classification due to the heavily skewed nature of network traffic data.
- Categories:
Three real geological sensor data with missing values (namely, 45710421 x, 45710421 y, and 45710422 x).
- Categories:
This dataset accurately models the internal behavior of an IoT spectrum sensor (belonging to the ElectroSense platform and consisting of a Raspberry Pi 3 with a software-defined radio kit) when it is functioning normally and under attack. To accomplish it, the system calls of the IoT sensor are monitored under normal behavior, gathered, cleaned, and stored in a centralized directory. Then, the device is infected with current malware affecting IoT devices, such as the Bashlite botnet, Thetick backdoor, Bdvl rootkit, and a Ransomware proof of concept.
- Categories:
The EegDot data set collected using a Cerebus neural signal acquisition equipment involed thirteen odor stimulating materials, five of which (smelling like rose (A), caramel (B), rotten (C), canned peach (D), and excrement (E)) were selected from the T&T olfactometer (from the Daiichi Yakuhin Sangyo Co., Ltd., Japan) and the remaining eight from essential oils (i.e., mint (F), tea tree (G), coffee (H), rosemary (I), jasmine (J), lemon (K), vanilla (L) and lavender (M)).
- Categories:
The EegDoc data set collected using a Cerebus neural signal acquisition equipment involved 2 types of odors (smelling like roses and rotten odors), each with 5 concentrations. Five concentrations of the rose odor are expressed as A10-3.0 (A30), A10-3.5 (A35), A10-4.0 (A40), A10-4.5 (A45) and A10-5.0 (A50), and five concentrations of the rotten odor are expressed as C10-4.0 (C40), C10-4.5 (C45), C10-5.0 (C50), C10-5.5 (C55) and C10-6.0 (C60).
- Categories:
This dataset contains a total of 160 vibration time-frequency maps and 160 corresponding label. The original signals were collected from 1.5 MW fans by a DAQ system with a sampling frequency of 16384 Hz in April 2021. There are four health states in the dataset, and each of them contains 4 gearboxes.
- Categories:
This repository contains code to apply the ESPER method to quasi-continuum models of biomolecules exhibiting multiple degrees of freedom, as described in Seitz et al. (2022, IEEE TCI). As inputs into ESPER, detailed instructions are also provided for generating custom synthetic datasets with increasing complexity to mirror known cryo-EM image attributes.
- Categories:
Currency recognition and classification is one essential task to do. Both paper and coin currency play important role in transactions in everyday life. But provided there are many datasets available of paper currency, and very less datasets are available of coin currency. Coin currency recognition becomes important because even though the amount for which people do coin transactions is small but inaccuracy in recognition can lead to huge loss. Following are the objectives to create this dataset:
- Categories:
This dataset is gathered by using Inertial Measurement Unit Sensor (IMU) (MPU-9250) Positioned on the seat of Vehicle (like Bus, car bike, cycle). This Dataset is record with the help of IMU Sensor which gather only accelerometer data. Currently, collecting plain and rutty surface data through IMU Sensor by travelling in Bus, car, bike and cycle in different places in Haryana.
- Categories: